I need to find the ratio of one floating-point number to another, and the ratio needs to be two integers. For example:
- input:
1.5, 3.25
- output:
"6:13"
Does anyone know of one? Searching the internet, I found no such algorithm, nor an algorithm for the least common multiple or denominator of two floating-point numbers (just integers).
Java implementation:
This is the final implementation that I will use:
public class RatioTest
{
public static String getRatio(double d1, double d2)//1.5, 3.25
{
while(Math.max(d1,d2) < Long.MAX_VALUE && d1 != (long)d1 && d2 != (long)d2)
{
d1 *= 10;//15 -> 150
d2 *= 10;//32.5 -> 325
}
//d1 == 150.0
//d2 == 325.0
try
{
double gcd = getGCD(d1,d2);//gcd == 25
return ((long)(d1 / gcd)) + ":" + ((long)(d2 / gcd));//"6:13"
}
catch (StackOverflowError er)//in case getGDC (a recursively looping method) repeats too many times
{
throw new ArithmeticException("Irrational ratio: " + d1 + " to " + d2);
}
}
public static double getGCD(double i1, double i2)//(150,325) -> (150,175) -> (150,25) -> (125,25) -> (100,25) -> (75,25) -> (50,25) -> (25,25)
{
if (i1 == i2)
return i1;//25
if (i1 > i2)
return getGCD(i1 - i2, i2);//(125,25) -> (100,25) -> (75,25) -> (50,25) -> (25,25)
return getGCD(i1, i2 - i1);//(150,175) -> (150,25)
}
}
->
indicates the next stage in the loop or method call
Mystical's implementation as Java:
Though I did not end up using this, it more than deserves to be recognized, so I translated it to Java, so I could understand it:
import java.util.Stack;
public class RatioTest
{
class Fraction{
long num;
long den;
double val;
};
Fraction build_fraction(Stack<long> cf){
long term = cf.size();
long num = cf[term - 1];
long den = 1;
while (term-- > 0){
long tmp = cf[term];
long new_num = tmp * num + den;
long new_den = num;
num = new_num;
den = new_den;
}
Fraction f;
f.num = num;
f.den = den;
f.val = (double)num / (double)den;
return f;
}
void get_fraction(double x){
System.out.println("x = " + x);
// Generate Continued Fraction
System.out.print("Continued Fraction: ");
double t = Math.abs(x);
double old_error = x;
Stack<long> cf;
Fraction f;
do{
// Get next term.
long tmp = (long)t;
cf.push(tmp);
// Build the current convergent
f = build_fraction(cf);
// Check error
double new_error = Math.abs(f.val - x);
if (tmp != 0 && new_error >= old_error){
// New error is bigger than old error.
// This means that the precision limit has been reached.
// Pop this (useless) term and break out.
cf.pop();
f = build_fraction(cf);
break;
}
old_error = new_error;
System.out.print(tmp + ", ");
// Error is zero. Break out.
if (new_error == 0)
break;
t -= tmp;
t = 1/t;
}while (cf.size() < 39); // At most 39 terms are needed for double-precision.
System.out.println();System.out.println();
// Print Results
System.out.println("The fraction is: " + f.num + " / " + f.den);
System.out.println("Target x = " + x);
System.out.println("Fraction = " + f.val);
System.out.println("Relative error is: " + (Math.abs(f.val - x) / x));System.out.println();
System.out.println();
}
public static void main(String[] args){
get_fraction(15.38 / 12.3);
get_fraction(0.3333333333333333333); // 1 / 3
get_fraction(0.4184397163120567376); // 59 / 141
get_fraction(0.8323518818409020299); // 1513686 / 1818565
get_fraction(3.1415926535897932385); // pi
}
}
One MORE thing:
The above mentioned implemented way of doing this works IN THEORY, however, due to floating-point rounding errors, this results in alot of unexpected exceptions, errors, and outputs. Below is a practical, robust, but a bit dirty implementation of a ratio-finding algorithm (Javadoc'd for your convenience):
public class RatioTest
{
/** Represents the radix point */
public static final char RAD_POI = '.';
/**
* Finds the ratio of the two inputs and returns that as a <tt>String</tt>
* <h4>Examples:</h4>
* <ul>
* <li><tt>getRatio(0.5, 12)</tt><ul>
* <li>returns "<tt>24:1</tt>"</li></ul></li>
* <li><tt>getRatio(3, 82.0625)</tt><ul>
* <li>returns "<tt>1313:48</tt>"</li></ul></li>
* </ul>
* @param d1 the first number of the ratio
* @param d2 the second number of the ratio
* @return the resulting ratio, in the format "<tt>X:Y</tt>"
*/
public static strictfp String getRatio(double d1, double d2)
{
while(Math.max(d1,d2) < Long.MAX_VALUE && (!Numbers.isCloseTo(d1,(long)d1) || !Numbers.isCloseTo(d2,(long)d2)))
{
d1 *= 10;
d2 *= 10;
}
long l1=(long)d1,l2=(long)d2;
try
{
l1 = (long)teaseUp(d1); l2 = (long)teaseUp(d2);
double gcd = getGCDRec(l1,l2);
return ((long)(d1 / gcd)) + ":" + ((long)(d2 / gcd));
}
catch(StackOverflowError er)
{
try
{
double gcd = getGCDItr(l1,l2);
return ((long)(d1 / gcd)) + ":" + ((long)(d2 / gcd));
}
catch (Throwable t)
{
return "Irrational ratio: " + l1 + " to " + l2;
}
}
}
/**
* <b>Recursively</b> finds the Greatest Common Denominator (GCD)
* @param i1 the first number to be compared to find the GCD
* @param i2 the second number to be compared to find the GCD
* @return the greatest common denominator of these two numbers
* @throws StackOverflowError if the method recurses to much
*/
public static long getGCDRec(long i1, long i2)
{
if (i1 == i2)
return i1;
if (i1 > i2)
return getGCDRec(i1 - i2, i2);
return getGCDRec(i1, i2 - i1);
}
/**
* <b>Iteratively</b> finds the Greatest Common Denominator (GCD)
* @param i1 the first number to be compared to find the GCD
* @param i2 the second number to be compared to find the GCD
* @return the greatest common denominator of these two numbers
*/
public static long getGCDItr(long i1, long i2)
{
for (short i=0; i < Short.MAX_VALUE && i1 != i2; i++)
{
while (i1 > i2)
i1 = i1 - i2;
while (i2 > i1)
i2 = i2 - i1;
}
return i1;
}
/**
* Calculates and returns whether <tt>d1</tt> is close to <tt>d2</tt>
* <h4>Examples:</h4>
* <ul>
* <li><tt>d1 == 5</tt>, <tt>d2 == 5</tt>
* <ul><li>returns <tt>true</tt></li></ul></li>
* <li><tt>d1 == 5.0001</tt>, <tt>d2 == 5</tt>
* <ul><li>returns <tt>true</tt></li></ul></li>
* <li><tt>d1 == 5</tt>, <tt>d2 == 5.0001</tt>
* <ul><li>returns <tt>true</tt></li></ul></li>
* <li><tt>d1 == 5.24999</tt>, <tt>d2 == 5.25</tt>
* <ul><li>returns <tt>true</tt></li></ul></li>
* <li><tt>d1 == 5.25</tt>, <tt>d2 == 5.24999</tt>
* <ul><li>returns <tt>true</tt></li></ul></li>
* <li><tt>d1 == 5</tt>, <tt>d2 == 5.1</tt>
* <ul><li>returns <tt>false</tt></li></ul></li>
* </ul>
* @param d1 the first number to compare for closeness
* @param d2 the second number to compare for closeness
* @return <tt>true</tt> if the two numbers are close, as judged by this method
*/
public static boolean isCloseTo(double d1, double d2)
{
if (d1 == d2)
return true;
double t;
String ds = Double.toString(d1);
if ((t = teaseUp(d1-1)) == d2 || (t = teaseUp(d2-1)) == d1)
return true;
return false;
}
/**
* continually increases the value of the last digit in <tt>d1</tt> until the length of the double changes
* @param d1
* @return
*/
public static double teaseUp(double d1)
{
String s = Double.toString(d1), o = s;
byte b;
for (byte c=0; Double.toString(extractDouble(s)).length() >= o.length() && c < 100; c++)
s = s.substring(0, s.length() - 1) + ((b = Byte.parseByte(Character.toString(s.charAt(s.length() - 1)))) == 9 ? 0 : b+1);
return extractDouble(s);
}
/**
* Works like Double.parseDouble, but ignores any extraneous characters. The first radix point (<tt>.</tt>) is the only one treated as such.<br/>
* <h4>Examples:</h4>
* <li><tt>extractDouble("123456.789")</tt> returns the double value of <tt>123456.789</tt></li>
* <li><tt>extractDouble("1qw2e3rty4uiop[5a'6.p7u8&9")</tt> returns the double value of <tt>123456.789</tt></li>
* <li><tt>extractDouble("123,456.7.8.9")</tt> returns the double value of <tt>123456.789</tt></li>
* <li><tt>extractDouble("I have $9,862.39 in the bank.")</tt> returns the double value of <tt>9862.39</tt></li>
* @param str The <tt>String</tt> from which to extract a <tt>double</tt>.
* @return the <tt>double</tt> that has been found within the string, if any.
* @throws NumberFormatException if <tt>str</tt> does not contain a digit between 0 and 9, inclusive.
*/
public static double extractDouble(String str) throws NumberFormatException
{
try
{
return Double.parseDouble(str);
}
finally
{
boolean r = true;
String d = "";
for (int i=0; i < str.length(); i++)
if (Character.isDigit(str.charAt(i)) || (str.charAt(i) == RAD_POI && r))
{
if (str.charAt(i) == RAD_POI && r)
r = false;
d += str.charAt(i);
}
try
{
return Double.parseDouble(d);
}
catch (NumberFormatException ex)
{
throw new NumberFormatException("The input string could not be parsed to a double: " + str);
}
}
}
}
4294967296
to2147483648
or there could be an integer overflow during the cast.) – Weaks2
instead of10
will get rid of those round-off errors. But it will give different (but still valid) answers. My implementation also suffers heavily from round-off. (hence why it doesn't work if the fraction is larger than 5 digits.) There's a way to fix this, but it's even messier... – Weaks