How to perform trigram operations in Google BigQuery?
Asked Answered
S

2

4

I do use the pg_trgm module in PostgreSQL to calculate similarity between two strings using trigrams. Particularly I use:

similarity(text, text)

Which returns returns a number that indicates how similar the two arguments are (between 0 and 1).

How can I perform similarity function (or equivalent) on Google BigQuery?

Sacaton answered 15/1, 2016 at 16:9 Comment(0)
C
3

Try below. At least as a blueprint for enhancing

SELECT text1, text2, similarity FROM 
JS(
// input table
(
  SELECT * FROM 
  (SELECT 'mikhail' AS text1, 'mikhail' AS text2),
  (SELECT 'mikhail' AS text1, 'mike' AS text2),
  (SELECT 'mikhail' AS text1, 'michael' AS text2),
  (SELECT 'mikhail' AS text1, 'javier' AS text2),
  (SELECT 'mikhail' AS text1, 'thomas' AS text2)
) ,
// input columns
text1, text2,
// output schema
"[{name: 'text1', type:'string'},
  {name: 'text2', type:'string'},
  {name: 'similarity', type:'float'}]
",
// function
"function(r, emit) {

  var _extend = function(dst) {
    var sources = Array.prototype.slice.call(arguments, 1);
    for (var i=0; i<sources.length; ++i) {
      var src = sources[i];
      for (var p in src) {
        if (src.hasOwnProperty(p)) dst[p] = src[p];
      }
    }
    return dst;
  };

  var Levenshtein = {
    /**
     * Calculate levenshtein distance of the two strings.
     *
     * @param str1 String the first string.
     * @param str2 String the second string.
     * @return Integer the levenshtein distance (0 and above).
     */
    get: function(str1, str2) {
      // base cases
      if (str1 === str2) return 0;
      if (str1.length === 0) return str2.length;
      if (str2.length === 0) return str1.length;

      // two rows
      var prevRow  = new Array(str2.length + 1),
          curCol, nextCol, i, j, tmp;

      // initialise previous row
      for (i=0; i<prevRow.length; ++i) {
        prevRow[i] = i;
      }

      // calculate current row distance from previous row
      for (i=0; i<str1.length; ++i) {
        nextCol = i + 1;

        for (j=0; j<str2.length; ++j) {
          curCol = nextCol;

          // substution
          nextCol = prevRow[j] + ( (str1.charAt(i) === str2.charAt(j)) ? 0 : 1 );
          // insertion
          tmp = curCol + 1;
          if (nextCol > tmp) {
            nextCol = tmp;
          }
          // deletion
          tmp = prevRow[j + 1] + 1;
          if (nextCol > tmp) {
            nextCol = tmp;
          }

          // copy current col value into previous (in preparation for next iteration)
          prevRow[j] = curCol;
        }

        // copy last col value into previous (in preparation for next iteration)
        prevRow[j] = nextCol;
      }

      return nextCol;
    }

  };

  var the_text1;

  try {
    the_text1 = decodeURI(r.text1).toLowerCase();
  } catch (ex) {
    the_text1 = r.text1.toLowerCase();
  }

  try {
    the_text2 = decodeURI(r.text2).toLowerCase();
  } catch (ex) {
    the_text2 = r.text2.toLowerCase();
  }

  emit({text1: the_text1, text2: the_text2,
        similarity: 1 - Levenshtein.get(the_text1, the_text2) / the_text1.length});

  }"
)
ORDER BY similarity DESC

This is light modification based on https://storage.googleapis.com/thomaspark-sandbox/udf-examples/pataky.js by @thomaspark

Camfort answered 15/1, 2016 at 17:11 Comment(1)
Thanks Mikhail, it actually works! I will test its performance in scale. Hope that BigQuery team incorporates such functions soon in the future. It is very useful for matching purposes on big data.Sacaton
N
3

I did it like this:

CREATE TEMP FUNCTION trigram_similarity(a STRING, b STRING) AS (
  (
    WITH a_trigrams AS (
      SELECT
        DISTINCT tri_a
      FROM
        unnest(ML.NGRAMS(SPLIT(LOWER(a), ''), [3,3])) AS tri_a
    ),
    b_trigrams AS (
      SELECT
        DISTINCT tri_b
      FROM
        unnest(ML.NGRAMS(SPLIT(LOWER(b), ''), [3,3])) AS tri_b
    )
    SELECT
      COUNTIF(tri_b IS NOT NULL) / COUNT(*)
    FROM
      a_trigrams
      LEFT JOIN b_trigrams ON tri_a = tri_b
  )
);

Here is a comparison to Postgres's pg_trgm:

select trigram_similarity('saemus', 'seamus');
-- 0.25 vs. pg_trgm 0.272727

select trigram_similarity('shamus', 'seamus');
-- 0.5 vs. pg_trgm 0.4
Nariko answered 2/10, 2020 at 3:17 Comment(0)

© 2022 - 2024 — McMap. All rights reserved.