in very cases, the number of significant is depend on to the evaluated process, e.g. error. I wrote the some codes which returns a number according to it's error (or with some desired digits) and also in string form (which doesn't eliminate right side significant zeros)
import numpy as np
def Sig_Digit(x, *N,):
if abs(x) < 1.0e-15:
return(1)
N = 1 if N ==() else N[0]
k = int(round(abs(N)-1))-int(np.floor(np.log10(abs(x))))
return(k);
def Sig_Format(x, *Error,):
if abs(x) < 1.0e-15:
return('{}')
Error = 1 if Error ==() else abs(Error[0])
k = int(np.floor(np.log10(abs(x))))
z = x/10**k
k = -Sig_Digit(Error, 1)
m = 10**k
y = round(x*m)/m
if k < 0:
k = abs(k)
if z >= 9.5:
FMT = '{:'+'{}'.format(1+k)+'.'+'{}'.format(k-1)+'f}'
else:
FMT = '{:'+'{}'.format(2+k)+'.'+'{}'.format(k)+'f}'
elif k == 0:
if z >= 9.5:
FMT = '{:'+'{}'.format(1+k)+'.0e}'
else:
FMT = '{:'+'{}'.format(2+k)+'.0f}'
else:
FMT = '{:'+'{}'.format(2+k)+'.'+'{}'.format(k)+'e}'
return(FMT)
def Sci_Format(x, *N):
if abs(x) < 1.0e-15:
return('{}')
N = 1 if N ==() else N[0]
N = int(round(abs(N)-1))
y = abs(x)
k = int(np.floor(np.log10(y)))
z = x/10**k
k = k-N
m = 10**k
y = round(x/m)*m
if k < 0:
k = abs(k)
if z >= 9.5:
FMT = '{:'+'{}'.format(1+k)+'.'+'{}'.format(k-1)+'f}'
else:
FMT = '{:'+'{}'.format(2+k)+'.'+'{}'.format(k)+'f}'
elif k == 0:
if z >= 9.5:
FMT = '{:'+'{}'.format(1+k)+'.0e}'
else:
FMT = '{:'+'{}'.format(2+k)+'.0f}'
else:
FMT = '{:'+'{}'.format(2+N)+'.'+'{}'.format(N)+'e}'
return(FMT)
def Significant(x, *Error):
N = 0 if Error ==() else Sig_Digit(abs(Error[0]), 1)
m = 10**N
y = round(x*m)/m
return(y)
def Scientific(x, *N):
m = 10**Sig_Digit(x, *N)
y = round(x*m)/m
return(y)
def Scientific_Str(x, *N,):
FMT = Sci_Format(x, *N)
return(FMT.format(x))
def Significant_Str(x, *Error,):
FMT = Sig_Format(x, *Error)
return(FMT.format(x))
test code:
X = [19.03345607, 12.075, 360.108321344, 4325.007605343]
Error = [1.245, 0.1245, 0.0563, 0.01245, 0.001563, 0.0004603]
for x in X:
for error in Error:
print(x,'+/-',error, end=' \t==> ')
print(' (',Significant_Str(x, error), '+/-', Scientific_Str(error),')')
print out:
19.03345607 +/- 1.245 ==> ( 19 +/- 1 )
19.03345607 +/- 0.1245 ==> ( 19.0 +/- 0.1 )
19.03345607 +/- 0.0563 ==> ( 19.03 +/- 0.06 )
19.03345607 +/- 0.01245 ==> ( 19.03 +/- 0.01 )
19.03345607 +/- 0.001563 ==> ( 19.033 +/- 0.002 )
19.03345607 +/- 0.0004603 ==> ( 19.0335 +/- 0.0005 )
12.075 +/- 1.245 ==> ( 12 +/- 1 )
12.075 +/- 0.1245 ==> ( 12.1 +/- 0.1 )
12.075 +/- 0.0563 ==> ( 12.07 +/- 0.06 )
12.075 +/- 0.01245 ==> ( 12.07 +/- 0.01 )
12.075 +/- 0.001563 ==> ( 12.075 +/- 0.002 )
12.075 +/- 0.0004603 ==> ( 12.0750 +/- 0.0005 )
360.108321344 +/- 1.245 ==> ( 360 +/- 1 )
360.108321344 +/- 0.1245 ==> ( 360.1 +/- 0.1 )
360.108321344 +/- 0.0563 ==> ( 360.11 +/- 0.06 )
360.108321344 +/- 0.01245 ==> ( 360.11 +/- 0.01 )
360.108321344 +/- 0.001563 ==> ( 360.108 +/- 0.002 )
360.108321344 +/- 0.0004603 ==> ( 360.1083 +/- 0.0005 )
4325.007605343 +/- 1.245 ==> ( 4325 +/- 1 )
4325.007605343 +/- 0.1245 ==> ( 4325.0 +/- 0.1 )
4325.007605343 +/- 0.0563 ==> ( 4325.01 +/- 0.06 )
4325.007605343 +/- 0.01245 ==> ( 4325.01 +/- 0.01 )
4325.007605343 +/- 0.001563 ==> ( 4325.008 +/- 0.002 )
4325.007605343 +/- 0.0004603 ==> ( 4325.0076 +/- 0.0005 )
1000.0
with trailing decimal points and/or zeros, which in standard practice indicate far more precision. – Contingence