I am developing an application in which there is a module for Image warping.I referred several sites but could not get any solution that could solve my problem.
Any tutorials/links or suggestions for face warping would be helpful.
I am developing an application in which there is a module for Image warping.I referred several sites but could not get any solution that could solve my problem.
Any tutorials/links or suggestions for face warping would be helpful.
This is from the samples shipped with Android SDK. From your question it's not clear if you want to know the Android API or the very warping algorithm
public class BitmapMesh extends GraphicsActivity {
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(new SampleView(this));
}
private static class SampleView extends View {
private static final int WIDTH = 20;
private static final int HEIGHT = 20;
private static final int COUNT = (WIDTH + 1) * (HEIGHT + 1);
private final Bitmap mBitmap;
private final float[] mVerts = new float[COUNT*2];
private final float[] mOrig = new float[COUNT*2];
private final Matrix mMatrix = new Matrix();
private final Matrix mInverse = new Matrix();
private static void setXY(float[] array, int index, float x, float y) {
array[index*2 + 0] = x;
array[index*2 + 1] = y;
}
public SampleView(Context context) {
super(context);
setFocusable(true);
mBitmap = BitmapFactory.decodeResource(getResources(),
R.drawable.beach);
float w = mBitmap.getWidth();
float h = mBitmap.getHeight();
// construct our mesh
int index = 0;
for (int y = 0; y <= HEIGHT; y++) {
float fy = h * y / HEIGHT;
for (int x = 0; x <= WIDTH; x++) {
float fx = w * x / WIDTH;
setXY(mVerts, index, fx, fy);
setXY(mOrig, index, fx, fy);
index += 1;
}
}
mMatrix.setTranslate(10, 10);
mMatrix.invert(mInverse);
}
@Override protected void onDraw(Canvas canvas) {
canvas.drawColor(0xFFCCCCCC);
canvas.concat(mMatrix);
canvas.drawBitmapMesh(mBitmap, WIDTH, HEIGHT, mVerts, 0,
null, 0, null);
}
private void warp(float cx, float cy) {
final float K = 10000;
float[] src = mOrig;
float[] dst = mVerts;
for (int i = 0; i < COUNT*2; i += 2) {
float x = src[i+0];
float y = src[i+1];
float dx = cx - x;
float dy = cy - y;
float dd = dx*dx + dy*dy;
float d = FloatMath.sqrt(dd);
float pull = K / (dd + 0.000001f);
pull /= (d + 0.000001f);
// android.util.Log.d("skia", "index " + i + " dist=" + d + " pull=" + pull);
if (pull >= 1) {
dst[i+0] = cx;
dst[i+1] = cy;
} else {
dst[i+0] = x + dx * pull;
dst[i+1] = y + dy * pull;
}
}
}
private int mLastWarpX = -9999; // don't match a touch coordinate
private int mLastWarpY;
@Override public boolean onTouchEvent(MotionEvent event) {
float[] pt = { event.getX(), event.getY() };
mInverse.mapPoints(pt);
int x = (int)pt[0];
int y = (int)pt[1];
if (mLastWarpX != x || mLastWarpY != y) {
mLastWarpX = x;
mLastWarpY = y;
warp(pt[0], pt[1]);
invalidate();
}
return true;
}
}
}
Image warping generally consists of two main stages. In the first stage you look for points that match on each image. The second stage involves finding a transformation between the set of matched points. Neither stage is trivial and image warping (generally speaking) remains a difficult problem. I have had to solve this problem in the past and so can speak from experience.
By dividing the problem into two parts you can devise solutions for each part independently. It would be helpful to read some material on the web, http://groups.csail.mit.edu/graphics/classes/CompPhoto06/html/lecturenotes/14_WarpMorph_6.pdf, for example.
In stage one, cross correlation is often used as the basis for finding matching points on the two images.
The transformations used in stage two will determine how accurately you can warp one image onto another. A linear transformation will now be very good while a two dimensional transformation that uses spline approximation will certainly cope with nonlinearities.
Here is another helpful link
© 2022 - 2024 — McMap. All rights reserved.