I came here with the exact same question. The accepted answer uses logcosh
which may have similar properties, but it isn't exactly Huber Loss. Here's how I implemented Huber Loss for Keras (note that I'm using Keras from Tensorflow 1.5).
import numpy as np
import tensorflow as tf
'''
' Huber loss.
' https://jaromiru.com/2017/05/27/on-using-huber-loss-in-deep-q-learning/
' https://en.wikipedia.org/wiki/Huber_loss
'''
def huber_loss(y_true, y_pred, clip_delta=1.0):
error = y_true - y_pred
cond = tf.keras.backend.abs(error) < clip_delta
squared_loss = 0.5 * tf.keras.backend.square(error)
linear_loss = clip_delta * (tf.keras.backend.abs(error) - 0.5 * clip_delta)
return tf.where(cond, squared_loss, linear_loss)
'''
' Same as above but returns the mean loss.
'''
def huber_loss_mean(y_true, y_pred, clip_delta=1.0):
return tf.keras.backend.mean(huber_loss(y_true, y_pred, clip_delta))
Depending if you want to reduce the loss or the mean of the loss, use the corresponding function above.