I want to use output variables of NN as an input in another function,but met with error like this 'Only Tensors created explicitly by the user (graph leaves) support the deepcopy protocol at the moment'.The out variables require gradient.
I tried by changing the output variables to numpy values, but in that case the back propagataion does not work because it see numpy values as variables which does not need gradient.
output = model(SOC[13])
# Three output values of NN
Rs=output[0]
R1=output[1]
C1=output[2]
# Using these variables in another function
num1=[Rs*R1*C1,R1+Rs]
den1=[C1*R1,1]
G = control.tf(num,den)
It should work, but it gives error.
14 num=[Rs*R1*C1,R1+Rs]
15 den=[C1*R1,1]
---> 16 G = control.tf(num,den)
~\Anaconda3\lib\site-packages\control\xferfcn.py in __init__(self, *args)
106
107 """
--> 108 args = deepcopy(args)
109 if len(args) == 2:
110 # The user provided a numerator and a denominator.
~\Anaconda3\lib\site-packages\torch\tensor.py in __deepcopy__(self, memo)
16 def __deepcopy__(self, memo):
17 if not self.is_leaf:
---> 18 raise RuntimeError("Only Tensors created explicitly by the user "
19 "(graph leaves) support the deepcopy protocol at the moment")
20 if id(self) in memo: