I have considered this problem myself and the best I can do is to decide how difficult the puzzle is to solve by actually solving it and analyzing the game tree.
Initially:
Implement your solver using "human rules", not with algorithms unlikely to be used by human players. (An interesting problem in its own right.) Score each logical rule in your solver according to its difficulty for humans to use. Use values in the hundreds or larger so you have freedom to adjust the scores relative to each other.
Solve the puzzle. At each position:
- Enumerate all new cells which can be logically deduced at the current game position.
- The score of each deduction (completely solving one cell) is the score of the easiest rule that suffices to make that deduction.
- EDIT: If more than one rule must be applied together, or one rule multiple times, to make a single deduction, track it as a single "compound" rule application. To score a compound, maybe use the minimum number of individual rule applications to solve a cell times the sum of the scores of each. (Considerably more mental effort is required for such deductions.) Calculating that minimum number of applications could be a CPU-intensive effort depending on your rules set. Any rule application that completely solves one or more cells should be rolled back before continuing to explore the position.
- Exclude all deductions with a score higher than the minimum among all deductions. (The logic here is that the player will not perceive the harder ones, having perceived an easier one and taken it; and also, this promises to prune a lot of computation out of the decision process.)
- The minimum score at the current position, divided by the number of "easiest" deductions (if many exist, finding one is easier) is the difficulty of that position. So if rule A is the easiest applicable rule with score 20 and can be applied in 4 cells, the position has score 5.
- Choose one of the "easiest" deductions at random as your play and advance to the next game position. I suggest retaining only completely solved cells for the next position, passing no other state. This is wasteful of CPU of course, repeating computations already done, but the goal is to simulate human play.
The puzzle's overall difficulty is the sum of the scores of the positions in your path through the game tree.
EDIT: Alternative position score: Instead of completely excluding deductions using harder rules, calculate overall difficulty of each rule (or compound application) and choose the minimum. (The logic here is that if rule A has score 50 and rule B has score 400, and rule A can be applied in one cell but rule B can be applied in ten, then the position score is 40 because the player is more likely to spot one of the ten harder plays than the single easier one. But this would require you to compute all possibilities.)
EDIT: Alternative suggested by Briguy37: Include all deductions in the position score. Score each position as 1 / (1/d1 + 1/d2 + ...)
where d1
, d2
, etc. are the individual deductions. (This basically computes "resistance to making any deduction" at a position given individual "deduction resistances" d1
, d2
, etc. But this would require you to compute all possibilities.)
Hopefully this scoring strategy will produce a metric for puzzles that increases as your subjective appraisal of difficulty increases. If it does not, then adjusting the scores of your rules (or your choice of heuristic from the above options) may achieve the desired correlation. Once you have achieved a consistent correlation between score and subjective experience, you should be able to judge what the numeric thresholds of "easy", "hard", etc. should be. And then you're done!