The documentation states:
Deterministic mode can have a performance impact, depending on your model.
My question is, what is meant by performance here. Processing speed or model quality (i.e. minimal loss)? In other words, when setting manual seeds and making the model perform in a deterministic way, does that cause longer training time until minimal loss is found, or is that minimal loss worse than when the model is non-deterministic?
For completeness' sake, I manually make the model deterministic by setting all of these properties:
def set_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(seed)
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)