Your problem is a very common one. And a real problem too, because there is no good solution.
We are in the same situation here, well I'd say worse, with 13 millions line of code, turnover and more than 800 developers working on the code. We often discuss about the very same problem that you describe.
The first idea - that your developers have already used - is to refactor common code in some utility classes. Our problem with that solution, even with pair programming, mentoring and discussion, is that we are simply too many for this to be effective. In fact we grow in subteams, with people sharing knowledge in their subteam, but the knowledge doesn't transit between subteams. Maybe we are wrong but I think that even pair programming and talks can't help in this case.
We also have an architecture team. This team is responsible to deal with design and architecture concerns and to make common utilities that we might need. This team in fact produces something we could call a corporate framework. Yes, it is a framework, and sometimes it works well. This team is also responsible to push best practices and to raise awareness of what should be done or not, what is available or what is not.
Good core Java API design is one of the reason for Java success. Good third party open sources libraries count a lot too. Even a small well crafted API allows to offer a really useful abstraction and can help reduce code size a lot. But you know, making framework and public API is not the same thing at all as just coding an utility class in 2 hours. It has a really high cost. An utility class costs 2 hours for the initial coding, maybe 2 days with debugging and unit tests. When you start sharing common code on big projects/teams, you really make an API. You must ensure perfect documentation then, really readable and maintainable code. When you release new version of this code, you must stay backward compatible. You have to promote it company wide (or at least team wide). From 2 days for your small utility class you grow to 10 days, 20 days or even 50 days for a full-fledged API.
And your API design may not be so great. Well, it is not that your engineers are not bright - indeed they are. But are you willing to let them work 50 days on a small utility class that just help parsing number in a consistent way for the UI? Are you willing to let them redesign the whole thing when you start using a mobile UI with totally different needs? Also have you noticed how the brightest engineers in the word make APIs that will never be popular or will fade slowly? You see, the first web project we made used only internal frameworks or no framework at all. We then added PHP/JSP/ASP. Then in Java we added Struts. Now JSF is the standard. And we are thinking about using Spring Web Flow, Vaadin or Lift...
All I want to say is that there is no good solution, the overhead grows exponentially with code size and team size. Sharing a big codebase restricts your agility and responsiveness. Any change must be done carefully, you must think of all potential integration problems and everybody must be trained of the new specificities and features.
But the main productivity point in a software company is not to gain 10 or even 50 lines of code when parsing XML. A generic code to do this will grow to a thousand lines of code anyway and recreates a complex API that will be layered by utility classes. When the guy make an utility class for parsing XML, it is good abstraction. He give a name to one dozen or even one hundred lines of specialized code. This code is useful because it is specialized. The common API allows to work on streams, URL, strings, whatever. It has a factory so you can choose you parser implementation. The utility class is good because it work only with this parser and with strings. And because you need one line of code to call it. But of course, this utility code is of limited use. It works well for this mobile application, or for loading XML configuration. And that's why the developer added the utility class for it in the first place.
In conclusion, what I would consider instead of trying to consolidate the code for the whole codebase is to split code responsibility as the teams grow:
- transform your big team that work on one big project into small teams that work on several subprojects;
- ensure that interfacing is good to minimize integration problems, but let team have their own code;
- inside theses teams and corresponding codebases, ensure you have the best practices. No duplicate code, good abstractions. Use existing proven APIs from the community. Use pair programming, strong API documentation, wikis... But you should really let different teams make their choices, build their own code, even if this means duplicate code across teams or different design decisions. You know, if the design decisions are different this may be because the needs are different.
What you are really managing is complexity. In the end if you make one monolithic codebase, a very generic and advanced one, you increase the time for newcomers to ramp up, you increase the risk that developers will not use your common code at all, and you slow down everybody because any change has far greater chances to break existing functionality.