Naive approach
def transpose_finite_iterable(iterable):
return zip(*iterable) # `itertools.izip` for Python 2 users
works fine for finite iterable (e.g. sequences like list
/tuple
/str
) of (potentially infinite) iterables which can be illustrated like
| |a_00| |a_10| ... |a_n0| |
| |a_01| |a_11| ... |a_n1| |
| |... | |... | ... |... | |
| |a_0i| |a_1i| ... |a_ni| |
| |... | |... | ... |... | |
where
n in ℕ
,
a_ij
corresponds to j
-th element of i
-th iterable,
and after applying transpose_finite_iterable
we get
| |a_00| |a_01| ... |a_0i| ... |
| |a_10| |a_11| ... |a_1i| ... |
| |... | |... | ... |... | ... |
| |a_n0| |a_n1| ... |a_ni| ... |
Python example of such case where a_ij == j
, n == 2
>>> from itertools import count
>>> iterable = [count(), count()]
>>> result = transpose_finite_iterable(iterable)
>>> next(result)
(0, 0)
>>> next(result)
(1, 1)
But we can't use transpose_finite_iterable
again to return to structure of original iterable
because result
is an infinite iterable of finite iterables (tuple
s in our case):
>>> transpose_finite_iterable(result)
... hangs ...
Traceback (most recent call last):
File "...", line 1, in ...
File "...", line 2, in transpose_finite_iterable
MemoryError
So how can we deal with this case?
... and here comes the deque
After we take a look at docs of itertools.tee
function, there is Python recipe that with some modification can help in our case
def transpose_finite_iterables(iterable):
iterator = iter(iterable)
try:
first_elements = next(iterator)
except StopIteration:
return ()
queues = [deque([element])
for element in first_elements]
def coordinate(queue):
while True:
if not queue:
try:
elements = next(iterator)
except StopIteration:
return
for sub_queue, element in zip(queues, elements):
sub_queue.append(element)
yield queue.popleft()
return tuple(map(coordinate, queues))
let's check
>>> from itertools import count
>>> iterable = [count(), count()]
>>> result = transpose_finite_iterables(transpose_finite_iterable(iterable))
>>> result
(<generator object transpose_finite_iterables.<locals>.coordinate at ...>, <generator object transpose_finite_iterables.<locals>.coordinate at ...>)
>>> next(result[0])
0
>>> next(result[0])
1
Synthesis
Now we can define general function for working with iterables of iterables ones of which are finite and another ones are potentially infinite using functools.singledispatch
decorator like
from collections import (abc,
deque)
from functools import singledispatch
@singledispatch
def transpose(object_):
"""
Transposes given object.
"""
raise TypeError('Unsupported object type: {type}.'
.format(type=type))
@transpose.register(abc.Iterable)
def transpose_finite_iterables(object_):
"""
Transposes given iterable of finite iterables.
"""
iterator = iter(object_)
try:
first_elements = next(iterator)
except StopIteration:
return ()
queues = [deque([element])
for element in first_elements]
def coordinate(queue):
while True:
if not queue:
try:
elements = next(iterator)
except StopIteration:
return
for sub_queue, element in zip(queues, elements):
sub_queue.append(element)
yield queue.popleft()
return tuple(map(coordinate, queues))
def transpose_finite_iterable(object_):
"""
Transposes given finite iterable of iterables.
"""
yield from zip(*object_)
try:
transpose.register(abc.Collection, transpose_finite_iterable)
except AttributeError:
# Python3.5-
transpose.register(abc.Mapping, transpose_finite_iterable)
transpose.register(abc.Sequence, transpose_finite_iterable)
transpose.register(abc.Set, transpose_finite_iterable)
which can be considered as its own inverse (mathematicians call this kind of functions "involutions") in class of binary operators over finite non-empty iterables.
As a bonus of singledispatch
ing we can handle numpy
arrays like
import numpy as np
...
transpose.register(np.ndarray, np.transpose)
and then use it like
>>> array = np.arange(4).reshape((2,2))
>>> array
array([[0, 1],
[2, 3]])
>>> transpose(array)
array([[0, 2],
[1, 3]])
Note
Since transpose
returns iterators and if someone wants to have a tuple
of list
s like in OP -- this can be made additionally with map
built-in function like
>>> original = [('a', 1), ('b', 2), ('c', 3), ('d', 4)]
>>> tuple(map(list, transpose(original)))
(['a', 'b', 'c', 'd'], [1, 2, 3, 4])
Advertisement
I've added generalized solution to lz
package from 0.5.0
version which can be used like
>>> from lz.transposition import transpose
>>> list(map(tuple, transpose(zip(range(10), range(10, 20)))))
[(0, 1, 2, 3, 4, 5, 6, 7, 8, 9), (10, 11, 12, 13, 14, 15, 16, 17, 18, 19)]
P.S.
There is no solution (at least obvious) for handling potentially infinite iterable of potentially infinite iterables, but this case is less common though.
d=dict(original)
followed byd.keys()
andd.values()
might be convenient. – Christianize