Simply put, you are doing this completely backward.
You should not be approaching this from what URLs you should be using. The URLs will effectively come "for free" once you've decided upon what resources are necessary for your system AND how you will represent those resources, and the interactions between the resources and application state.
To quote Roy Fielding
A REST API should spend almost all of
its descriptive effort in defining the
media type(s) used for representing
resources and driving application
state, or in defining extended
relation names and/or
hypertext-enabled mark-up for existing
standard media types. Any effort spent
describing what methods to use on what
URIs of interest should be entirely
defined within the scope of the
processing rules for a media type
(and, in most cases, already defined
by existing media types). [Failure
here implies that out-of-band
information is driving interaction
instead of hypertext.]
Folks always start with the URIs and think this is the solution, and then they tend to miss a key concept in REST architecture, notably, as quoted above, "Failure here implies that out-of-band information is driving interaction instead of hypertext."
To be honest, many see a bunch of URIs and some GETs and PUTs and POSTs and think REST is easy. REST is not easy. RPC over HTTP is easy, moving blobs of data back and forth proxied through HTTP payloads is easy. REST, however, goes beyond that. REST is protocol agnostic. HTTP is just very popular and apt for REST systems.
REST lives in the media types, their definitions, and how the application drives the actions available to those resources via hypertext (links, effectively).
There are different view about media types in REST systems. Some favor application specific payloads, while others like uplifting existing media types in to roles that are appropriate for the application. For example, on the one hand you have specific XML schemas designed suited to your application versus using something like XHTML as your representation, perhaps through microformats and other mechanisms.
Both approaches have their place, I think, the XHTML working very well in scenarios that overlap both the human driven and machine driven web, whereas the former, more specific data types I feel better facilitate machine to machine interactions. I find the uplifting of commodity formats can make content negotiation potentially difficult. "application/xml+yourresource" is much more specific as a media type than "application/xhtml+xml", as the latter can apply to many payloads which may or may not be something a machine client is actually interested in, nor can it determine without introspection.
However, XHTML works very well (obviously) in the human web where web browsers and rendering is very important.
You application will guide you in those kinds of decisions.
Part of the process of designing a REST system is discovering the first class resources in your system, along with the derivative, support resources necessary to support the operations on the primary resources. Once the resources are discovered, then the representation of those resources, as well as the state diagrams showing resource flow via hypertext within the representations because the next challenge.
Recall that each representation of a resource, in a hypertext system, combines both the actual resource representation along with the state transitions available to the resource. Consider each resource a node in a graph, with the links being the lines leaving that node to other states. These links inform clients not only what can be done, but what is required for them to be done (as a good link combines the URI and the media type required).
For example, you may have:
<link href="http://example.com/users" rel="users" type="application/xml+usercollection"/>
<link href="http://example.com/users?search" rel="search" type="application/xml+usersearchcriteria"/>
Your documentation will talk about the rel field named "users", and the media type of "application/xml+youruser".
These links may seem redundant, they're all talking to the same URI, pretty much. But they're not.
This is because for the "users" relation, that link is talking about the collection of users, and you can use the uniform interface to work with the collection (GET to retrieve all of them, DELETE to delete all of them, etc.)
If you POST to this URL, you will need to pass a "application/xml+usercollection" document, which will probably only contain a single user instance within the document so you can add the user, or not, perhaps, to add several at once. Perhaps your documentation will suggest that you can simply pass a single user type, instead of the collection.
You can see what the application requires in order to perform a search, as defined by the "search" link and it's mediatype. The documentation for the search media type will tell you how this behaves, and what to expect as results.
The takeaway here, though, is the URIs themselves are basically unimportant. The application is in control of the URIs, not the clients. Beyond a few 'entry points', your clients should rely on the URIs provided by the application for its work.
The client needs to know how to manipulate and interpret the media types, but doesn't much need to care where it goes.
These two links are semantically identical in a clients eyes:
<link href="http://example.com/users?search" rel="search" type="application/xml+usersearchcriteria"/>
<link href="http://example.com/AW163FH87SGV" rel="search" type="application/xml+usersearchcriteria"/>
So, focus on your resources. Focus on their state transitions in the application and how that's best achieved.