I have a complicated curve defined as a set of points in a table like so (the full table is here):
# x y
1.0577 12.0914
1.0501 11.9946
1.0465 11.9338
...
If I plot this table with the commands:
plt.plot(x_data, y_data, c='b',lw=1.)
plt.scatter(x_data, y_data, marker='o', color='k', s=10, lw=0.2)
I get the following:
where I've added the red points and segments manually. What I need is a way to calculate those segments for each of those points, that is: a way to find the minimum distance from a given point in this 2D space to the interpolated curve.
I can't use the distance to the data points themselves (the black dots that generate the blue curve) since they are not located at equal intervals, sometimes they are close and sometimes they are far apart and this deeply affects my results further down the line.
Since this is not a well behaved curve I'm not really sure what I could do. I've tried interpolating it with a UnivariateSpline but it returns a very poor fit:
# Sort data according to x.
temp_data = zip(x_data, y_data)
temp_data.sort()
# Unpack sorted data.
x_sorted, y_sorted = zip(*temp_data)
# Generate univariate spline.
s = UnivariateSpline(x_sorted, y_sorted, k=5)
xspl = np.linspace(0.8, 1.1, 100)
yspl = s(xspl)
# Plot.
plt.scatter(xspl, yspl, marker='o', color='r', s=10, lw=0.2)
I also tried increasing the number of interpolating points but got a mess:
# Sort data according to x.
temp_data = zip(x_data, y_data)
temp_data.sort()
# Unpack sorted data.
x_sorted, y_sorted = zip(*temp_data)
t = np.linspace(0, 1, len(x_sorted))
t2 = np.linspace(0, 1, 100)
# One-dimensional linear interpolation.
x2 = np.interp(t2, t, x_sorted)
y2 = np.interp(t2, t, y_sorted)
plt.scatter(x2, y2, marker='o', color='r', s=10, lw=0.2)
Any ideas/pointers will be greatly appreciated.