As I spent a considerable amount of time on this, I'd like to share my solution on how to get the Voronoi polygons instead of just the edges.
The code is at https://gist.github.com/letmaik/8803860 and extends on the solution of tauran.
First, I changed the code to give me vertices and (pairs of) indices (=edges) separately, as many calculations can be simplified when working on indices instead of point coordinates.
Then, in the voronoi_cell_lines
method I determine which edges belong to which cells. For that I use the proposed solution of Alink from a related question. That is, for each edge find the two nearest input points (=cells) and create a mapping from that.
The last step is to create the actual polygons (see voronoi_polygons
method). First, the outer cells which have dangling edges need to be closed. This is as simple as looking through all edges and checking which ones have only one neighboring edge. There can be either zero or two such edges. In case of two, I then connect these by introducing an additional edge.
Finally, the unordered edges in each cell need to be put into the right order to derive a polygon from them.
The usage is:
P = np.random.random((100,2))
fig = plt.figure(figsize=(4.5,4.5))
axes = plt.subplot(1,1,1)
plt.axis([-0.05,1.05,-0.05,1.05])
vertices, lineIndices = voronoi(P)
cells = voronoi_cell_lines(P, vertices, lineIndices)
polys = voronoi_polygons(cells)
for pIdx, polyIndices in polys.items():
poly = vertices[np.asarray(polyIndices)]
p = matplotlib.patches.Polygon(poly, facecolor=np.random.rand(3,1))
axes.add_patch(p)
X,Y = P[:,0],P[:,1]
plt.scatter(X, Y, marker='.', zorder=2)
plt.axis([-0.05,1.05,-0.05,1.05])
plt.show()
which outputs:
The code is probably not suitable for large numbers of input points and can be improved in some areas. Nevertheless, it may be helpful to others who have similar problems.