At the beginning of my Gtk-Gdk-Cairo-Pango app, I create the window:
GtkWidget *window = gtk_window_new(GTK_WINDOW_TOPLEVEL);
First, there is GtkWindow
, but gtk_create_window
returns GtkWidget
, not GtkWindow
, why?
Then, some functions, like gdk_window_process_updates(..)
require GdkWindow*
.
gtk_window_set_geometry_hints()
on the other hand requires GtkWindow*
.
In documentation there is also GdkWindow* gdk_window_new()
that returns GdkWindow
.
Sure there is documentation saying:
A GdkWindow is a rectangular region on the screen. It's a low-level object, used to implement high-level objects such as GtkWidget and GtkWindow on the GTK+ level. A GtkWindow is a toplevel window, the thing a user might think of as a "window" with a titlebar and so on; a GtkWindow may contain many GdkWindow.
But it still does not tell me, when and why I should create Gtk or Gdk windows? What is the pattern here to follow?
Now you ask, what particular problem I am trying to solve? Sure, I try to draw text using cairo+pango on top of gtk+gdk, right after mouse moves. The problem is that although the actual drawing seems to be fast performing, I cannot get it happen exactly as mouse moves. In my motion_notify_event
I just call gtk_widget_queue_draw(GtkWidget)
but there is obvious lag behind the actual mouse moving on screen, even if I draw single character it is not aligned with the mouse pointer during the move phase and only catches it after the mouse is stopped.
What I tried is to speed up the update by calling gdk_window_process_updates(GDK_WINDOW(window), false);
, the compiler eats it, but I got runtime assertion: Gdk-CRITICAL **: gdk_window_process_updates: assertion 'GDK_IS_WINDOW (window)' failed
. I cannot find any information on this macro and how/when to use it.
#include <cairo.h>
#include <gtk/gtk.h>
#define TXT "1234567890"
int X = 0, Y = 0;
static void do_drawing(cairo_t *);
GtkWidget *window;
PangoLayout *layout = 0;
static gboolean on_draw_event(GtkWidget *widget, cairo_t *cr,
gpointer user_data) {
do_drawing(cr);
return FALSE;
}
static void do_drawing(cairo_t *cr) {
if (layout == 0) {
layout = pango_cairo_create_layout (cr);
pango_layout_set_text (layout, TXT, -1);
}
for (int y = 0; y < 2; y++) {
cairo_set_source_rgb (cr, 1, 0, 1);
cairo_move_to (cr, 0+X, 0 + y * 20 + Y);
pango_cairo_show_layout (cr, layout);
}
gtk_widget_queue_draw(window);
}
static gint onmouse(GtkWidget *widget, GdkEventMotion *event) {
X = event->x; Y = event->y;
gtk_widget_queue_draw(widget);
gdk_window_process_updates(GDK_WINDOW(widget), false);
}
int main(int argc, char *argv[]) {
GtkWidget *darea;
gtk_init(&argc, &argv);
window = gtk_window_new(GTK_WINDOW_TOPLEVEL);
darea = gtk_drawing_area_new();
gtk_container_add(GTK_CONTAINER(window), darea);
gtk_widget_set_events (window, GDK_EXPOSURE_MASK
| GDK_LEAVE_NOTIFY_MASK | GDK_POINTER_MOTION_MASK);
g_signal_connect(G_OBJECT(darea), "draw", G_CALLBACK(on_draw_event), NULL);
g_signal_connect(window, "destroy", G_CALLBACK(gtk_main_quit), NULL);
g_signal_connect(window, "motion_notify_event", G_CALLBACK(onmouse), NULL);
gtk_window_set_position(GTK_WINDOW(window), GTK_WIN_POS_CENTER);
gtk_window_set_default_size(GTK_WINDOW(window), 5000, 5000);
gtk_window_set_title(GTK_WINDOW(window), "Lines");
gtk_widget_show_all(window);
gtk_main();
return 0;
}