To find the running time of an algorithm we need to firstly able to write an expression for the algorithm and that expression tells the running time for each step. So you need to walk through each of the steps of an algorithm to find the expression.
For example, suppose we defined a predicate, isSorted, which would take as input an array a and the size, n, of the array and would return true if and only if the array was sorted in increasing order.
bool isSorted(int *a, int n) {
if (n == 1)
return true; // a 1-element array is always sorted
for (int i = 0; i < n-1; i++) {
if (a[i] > a[i+1]) // found two adjacent elements out of order
return false;
}
return true; // everything's in sorted order
}
Clearly, the size of the input here will simply be n, the size of the array. How many steps will be performed in the worst case, for input n?
The first if statement counts as 1 step
The for loop will execute n−1 times in the worst case (assuming the internal test doesn't kick us out), for a total time of n−1 for the loop test and the increment of the index.
Inside the loop, there's another if statement which will be executed once per iteration for a total of n−1 time, at worst.
The last return will be executed once.
So, in the worst case, we'll have done 1+(n−1)+(n−1)+1
computations, for a total run time T(n)≤1+(n−1)+(n−1)+1=2n and so we have the timing function T(n)=O(n).
So in brief what we have done is-->>
1.For a parameter 'n' which gives the size of the input we assume that each simple statements that are executed once will take constant time,for simplicity assume one
2.The iterative statements like loops and inside body will take variable time depending upon the input.
Which has solution T(n)=O(n), just as with the non-recursive version, as it happens.
3.So your task is to go step by step and write down the function in terms of n to calulate the time complexity
For recursive algorithms, you do the same thing, only this time you add the time taken by each recursive call, expressed as a function of the time it takes on its input.
For example, let's rewrite, isSorted as a recursive algorithm:
bool isSorted(int *a, int n) {
if (n == 1)
return true;
if (a[n-2] > a[n-1]) // are the last two elements out of order?
return false;
else
return isSorted(a, n-1); // is the initial part of the array sorted?
}
In this case we still walk through the algorithm, counting: 1 step for the first if plus 1 step for the second if, plus the time isSorted will take on an input of size n−1, which will be T(n−1), giving a recurrence relation
T(n)≤1+1+T(n−1)=T(n−1)+O(1)
Which has solution T(n)=O(n), just as with the non-recursive version, as it happens.
Simple Enough!! Practice More to write the recurrence relation of various algorithms keeping in mind how much time each step will be executed in algorithm