Well as the saying goes - get it working - then get it working better. I noticed on my above example it assumes all the edges in the edges array do in fact link up in a nice border. This may not be the case in the real world (as I have discovered from my input files i am using!) In fact some of my input files actually have many polygons and all need borders detected. I also wanted to make sure the winding order is correct. So I have fixed that up as well. see below. (Feel I am making headway at last!)
private static List<int> OrganizeEdges(List<int> edges, List<Point> positions)
{
var visited = new Dictionary<int, bool>();
var edgeList = new List<int>();
var resultList = new List<int>();
var nextIndex = -1;
while (resultList.Count < edges.Count)
{
if (nextIndex < 0)
{
for (int i = 0; i < edges.Count; i += 2)
{
if (!visited.ContainsKey(i))
{
nextIndex = edges[i];
break;
}
}
}
for (int i = 0; i < edges.Count; i += 2)
{
if (visited.ContainsKey(i))
continue;
int j = i + 1;
int k = -1;
if (edges[i] == nextIndex)
k = j;
else if (edges[j] == nextIndex)
k = i;
if (k >= 0)
{
var edge = edges[k];
visited[i] = true;
edgeList.Add(nextIndex);
edgeList.Add(edge);
nextIndex = edge;
i = 0;
}
}
// calculate winding order - then add to final result.
var borderPoints = new List<Point>();
edgeList.ForEach(ei => borderPoints.Add(positions[ei]));
var winding = CalculateWindingOrder(borderPoints);
if (winding > 0)
edgeList.Reverse();
resultList.AddRange(edgeList);
edgeList = new List<int>();
nextIndex = -1;
}
return resultList;
}
/// <summary>
/// returns 1 for CW, -1 for CCW, 0 for unknown.
/// </summary>
public static int CalculateWindingOrder(IList<Point> points)
{
// the sign of the 'area' of the polygon is all we are interested in.
var area = CalculateSignedArea(points);
if (area < 0.0)
return 1;
else if (area > 0.0)
return - 1;
return 0; // error condition - not even verts to calculate, non-simple poly, etc.
}
public static double CalculateSignedArea(IList<Point> points)
{
double area = 0.0;
for (int i = 0; i < points.Count; i++)
{
int j = (i + 1) % points.Count;
area += points[i].X * points[j].Y;
area -= points[i].Y * points[j].X;
}
area /= 2.0f;
return area;
}