You are basically interested in estimating a Spectrum -assuming you've already gone past the stage of reading the WAV and converting it into a discrete time signal.
Among the various methods, the most basic is the Periodogram, which amounts to taking a windowed Discrete Fourier Transform (with a FFT) and keeping its squared magnitude. This correspond to Paul's answer. You need a window which spans over several periods of the lowest frequency you want to detect. Example: if your sinusoids can be as low as 10 Hz (period = 100ms), you should take a window of 200ms o 300ms or so (or more). However, the periodogram has some disadvantages, though it's simple to compute and it's more than enough if high precision is not required:
The raw periodogram is not a good
spectral estimate because of spectral
bias and the fact that the variance
at a given frequency does not decrease
as the number of samples used in the
computation increases.
The periodogram can perform better by averaging several windows, with a judious choosing of the widths (Bartlet method). And there are many other methods for estimating the spectrum (AR modelling).
Actually, you are not exactly interested in estimating a full spectrum, but only the location of a single frequency. This can be done seeking a peak of an estimated spectrum (done as explained), but also by more specific and powerful (and complicated) methods (Pisarenko, MUSIC algorithm). They would probably be overkill in your case.
Hanning
window function will smear the input over several bins; the 1.35 Hz suggested is quite optimistic. As Wikipedia notes, it may in fact make sense not to window at all. – Joly