However, because there are no coefficients being stored, the "model" in this case is simply the details of what was used to predict each y_hat
Maybe you have used print(mdl)
command or simply mdl
to see what the model mdl
contains, but this is not the case. The model is really complicated and stores a big number of parameters.
To have an idea what's inside, you may use unlist(mdl)
and see the big list of parameters in it.
This is a part of the manual of the command describing how it really works:
Fitting is done locally. That is, for the fit at point x, the fit is made using points in a neighbourhood of x, weighted by their distance from x (with differences in ‘parametric’ variables being ignored when computing the distance). The size of the neighbourhood is controlled by α (set by span or enp.target). For α < 1, the neighbourhood includes proportion α of the points, and these have tricubic weighting (proportional to (1 - (dist/maxdist)^3)^3). For α > 1, all points are used, with the ‘maximum distance’ assumed to be α^(1/p) times the actual maximum distance for p explanatory variables.
For the default family, fitting is by (weighted) least squares. For
family="symmetric" a few iterations of an M-estimation procedure with
Tukey's biweight are used. Be aware that as the initial value is the
least-squares fit, this need not be a very resistant fit.
What I believe is that it tries to fit a polynomial model in the neighborhood of every point (not just a single polynomial for the whole set). But the neighborhood does not mean only one point before and one point after, if I was implementing such a function I put a big weight on the nearest points to the point x, and lower weights to distal points, and tried to fit a polynomial that fits the highest total weight.
Then if the given x' for which height should be predicted is closest to point x, I tried to use the polynomial fitted on the neighborhoods of the point x - say P(x) - and applied it over x' - say P(x') - and that would be the prediction.
Let me know if you are looking for anything special.