I look most of the previously asked questions but was not able to find answer for my question:
I have following dataframe
id year month score num_attempts
0 483625 2010 01 50 1
1 967799 2009 03 50 1
2 213473 2005 09 100 1
3 498110 2010 12 60 1
5 187243 2010 01 100 1
6 508311 2005 10 15 1
7 486688 2005 10 50 1
8 212550 2005 10 500 1
10 136701 2005 09 25 1
11 471651 2010 01 50 1
I want to get the following dataframe
year month sum_score sum_num_attempts
2009 03 50 1
2005 09 125 2
2010 12 60 1
2010 01 200 2
2005 10 565 3
Here is what I tried:
sum_df = df.groupby(by=['year','month'])['score'].sum()
But this doesn't look efficient and correct. If I have more than one column need to be aggregate this seems like a very expensive call. for example if I have another column num_attempts
and just want to sum by year month as score.
num_attempts
if you want to keep it in the group operation? – Weakdf.groupby(['year','month'])[['score','num_attempts']].sum()
ordf.groupby(['year','month']).agg({'score':'sum', 'num_attempts':'max'})
? – Spratt