I was just hitting the same problem, and found the large difference in performance when axis 0 is selected for finding the minimum. As suggested, the problem seems to be related to internally copying the array.
I devised a rather simple-minded workaround using Cython that simultaneously establishes the minimum values and their position in a 2D numpy array along a given axis. Note that for axis = 0
, the algorithm works on an array of columns (maximum number specified by the constant blocksize
- here set equivalent to 8 kByte of data) simultaneously to make good use of the cache:
%%cython -c=-O2 -c=-march=native
import numpy as np
cimport numpy as np
cimport cython
from libc.stdint cimport uint32_t
@cython.boundscheck(False)
@cython.wraparound(False)
cdef void _minargmin_2d_64_axis_0(uint32_t[:] minloc, double[:] minimum, double[:, :] arr) nogil:
"""
Find the minimum and argmin for a 2D array of 64-bit floats along axis 0
Parameters:
-----------
arr: numpy_array, dtype=np.float64, shape=(m, n)
The array for which the minima should be computed.
minloc: numpy_array, dtype=np.uint32, shape=(n)
Stores the rows where the minima occur for each column.
minimum: numpy_array, dtype=np.float64, shape=(n)
The minima along each column.
"""
# Columns of the matrix are accessed in blocks to increase cache performance.
# Specify the number of columns here:
DEF blocksize = 1024
cdef int i, j, k
cdef double minim[blocksize]
cdef uint32_t minimloc[blocksize]
# Read blocks of data to make good use of the cache
cdef int blocks
blocks = arr.shape[1] / blocksize
remains = arr.shape[1] % blocksize
for i in xrange(0, blocksize * blocks, blocksize):
for k in xrange(blocksize):
minim[k] = arr[0, i + k]
minimloc[k] = 0
for j in xrange(1, arr.shape[0]):
for k in xrange(blocksize):
if arr[j, i + k] < minim[k]:
minim[k] = arr[j, i + k]
minimloc[k] = j
for k in xrange(blocksize):
minimum[i + k] = minim[k]
minloc[i + k] = minimloc[k]
# Work on the final 'incomplete' block
i = blocksize * blocks
for k in xrange(remains):
minim[k] = arr[0, i + k]
minimloc[k] = 0
for j in xrange(1, arr.shape[0]):
for k in xrange(remains):
if arr[j, i + k] < minim[k]:
minim[k] = arr[j, i + k]
minimloc[k] = j
for k in xrange(remains):
minimum[i + k] = minim[k]
minloc[i + k] = minimloc[k]
# Done!
@cython.boundscheck(False)
@cython.wraparound(False)
cdef void _minargmin_2d_64_axis_1(uint32_t[:] minloc, double[:] minimum, double[:, :] arr) nogil:
"""
Find the minimum and argmin for a 2D array of 64-bit floats along axis 1
Parameters:
-----------
arr: numpy_array, dtype=np.float64, shape=(m, n)
The array for which the minima should be computed.
minloc: numpy_array, dtype=np.uint32, shape=(m)
Stores the rows where the minima occur for each row.
minimum: numpy_array, dtype=np.float64, shape=(m)
The minima along each row.
"""
cdef int i
cdef int j
cdef double minim
cdef uint32_t minimloc
for i in xrange(arr.shape[0]):
minim = arr[i, 0]
minimloc = 0
for j in xrange(1, arr.shape[1]):
if arr[i, j] < minim:
minim = arr[i, j]
minimloc = j
minimum[i] = minim
minloc[i] = minimloc
@cython.boundscheck(False)
@cython.wraparound(False)
cdef void _minargmin_2d_32_axis_0(uint32_t[:] minloc, float[:] minimum, float[:, :] arr) nogil:
"""
Find the minimum and argmin for a 2D array of 32-bit floats along axis 0
Parameters:
-----------
arr: numpy_array, dtype=np.float32, shape=(m, n)
The array for which the minima should be computed.
minloc: numpy_array, dtype=np.uint32, shape=(n)
Stores the rows where the minima occur for each column.
minimum: numpy_array, dtype=np.float32, shape=(n)
The minima along each column.
"""
# Columns of the matrix are accessed in blocks to increase cache performance.
# Specify the number of columns here:
DEF blocksize = 2048
cdef int i, j, k
cdef float minim[blocksize]
cdef uint32_t minimloc[blocksize]
# Read blocks of data to make good use of the cache
cdef int blocks
blocks = arr.shape[1] / blocksize
remains = arr.shape[1] % blocksize
for i in xrange(0, blocksize * blocks, blocksize):
for k in xrange(blocksize):
minim[k] = arr[0, i + k]
minimloc[k] = 0
for j in xrange(1, arr.shape[0]):
for k in xrange(blocksize):
if arr[j, i + k] < minim[k]:
minim[k] = arr[j, i + k]
minimloc[k] = j
for k in xrange(blocksize):
minimum[i + k] = minim[k]
minloc[i + k] = minimloc[k]
# Work on the final 'incomplete' block
i = blocksize * blocks
for k in xrange(remains):
minim[k] = arr[0, i + k]
minimloc[k] = 0
for j in xrange(1, arr.shape[0]):
for k in xrange(remains):
if arr[j, i + k] < minim[k]:
minim[k] = arr[j, i + k]
minimloc[k] = j
for k in xrange(remains):
minimum[i + k] = minim[k]
minloc[i + k] = minimloc[k]
# Done!
@cython.boundscheck(False)
@cython.wraparound(False)
cdef void _minargmin_2d_32_axis_1(uint32_t[:] minloc, float[:] minimum, float[:, :] arr) nogil:
"""
Find the minimum and argmin for a 2D array of 32-bit floats along axis 1
Parameters:
-----------
arr: numpy_array, dtype=np.float32, shape=(m, n)
The array for which the minima should be computed.
minloc: numpy_array, dtype=np.uint32, shape=(m)
Stores the rows where the minima occur for each row.
minimum: numpy_array, dtype=np.float32, shape=(m)
The minima along each row.
"""
cdef int i
cdef int j
cdef float minim
cdef uint32_t minimloc
for i in xrange(arr.shape[0]):
minim = arr[i, 0]
minimloc = 0
for j in xrange(1, arr.shape[1]):
if arr[i, j] < minim:
minim = arr[i, j]
minimloc = j
minimum[i] = minim
minloc[i] = minimloc
def Min_Argmin(array_2d, axis = 1):
"""
Find the minima and corresponding locations (argmin) of a two-dimensional
numpy array of floats along a given axis simultaneously, and returns them
as a tuple of arrays (min_2d, argmin_2d).
(Note: float16 arrays will be internally transformed to float32 arrays.)
----------
array_2d: numpy_array, dtype=np.float32 or np.float64, shape=(m, n)
The array for which the minima should be computed.
axis : int, 0 or 1 (default) :
The axis along which minima are computed.
min_2d: numpy_array, dtype=np.uint8, shape=(m) or shape=(n):
The array where the minima along the given axis are stored.
argmin_2d:
The array storing the row/column where the minimum occurs.
"""
# Sanity checks:
if len(array_2d.shape) != 2:
raise IndexError('Min_Argmin: Number of dimensions of array must be 2')
if not (axis == 0 or axis == 1):
raise ValueError('Min_Argmin: Invalid axis specified')
arr_type = array_2d.dtype
if not arr_type in ('float16', 'float32', 'float64'):
raise ValueError('Min_Argmin: Not a float array')
# Transform float16 arrays
if arr_type == 'float16':
array_2d = array_2d.astype(np.float32)
# Run analysis
if arr_type == 'float64':
# Double accuracy
min_array = np.zeros(array_2d.shape[1 - axis], dtype = np.float64)
argmin_array = np.zeros(array_2d.shape[1 - axis], dtype = np.uint32)
if (axis == 0):
_minargmin_2d_64_axis_0(argmin_array, min_array, array_2d)
else:
_minargmin_2d_64_axis_1(argmin_array, min_array, array_2d)
else:
# Single accuracy
min_array = np.zeros(array_2d.shape[1 - axis], dtype = np.float32)
argmin_array = np.zeros(array_2d.shape[1 - axis], dtype = np.uint32)
if (axis == 0):
_minargmin_2d_32_axis_0(argmin_array, min_array, array_2d)
else:
_minargmin_2d_32_axis_1(argmin_array, min_array, array_2d)
# Transform back to float16 type as necessary
if arr_type == 'float16':
min_array = min_array.astype(np.float16)
# Return results
return min_array, argmin_array
The code can be placed and compiled in an IPython notebook cell after loading Cython support:
%load_ext Cython
and then called in the form:
min_array, argmin_array = Min_Argmin(two_dim_array, axis = 0 or 1)
Timing example:
random_array = np.random.rand(20000, 20000).astype(np.float32)
%timeit min_array, argmin_array = Min_Argmin(random_array, axis = 0)
%timeit min_array, argmin_array = Min_Argmin(random_array, axis = 1)
1 loops, best of 3: 405 ms per loop
1 loops, best of 3: 307 ms per loop
For comparison:
%%timeit
min_array = random_array.min(axis = 0)
argmin_array = random_array.argmin(axis = 0)
1 loops, best of 3: 10.3 s per loop
%%timeit
min_array = random_array.min(axis = 1)
argmin_array = random_array.argmin(axis = 1)
1 loops, best of 3: 423 ms per loop
So, there is a significant speedup for axis = 0
(and still a small advantage for axis = 1
, if one is interested in both minimum and location).