I have built a small code that I want to use for solving eigenvalue problems involving large sparse matrices. It's working fine, all I want to do now is to set some elements in the sparse matrix to zero, i.e. the ones in the very top row (which corresponds to implementing boundary conditions). I can just adjust the column vectors (C0, C1, and C2) below to achieve that. However, I wondered if there is a more direct way. Evidently, NumPy indexing does not work with SciPy's sparse package.
import scipy.sparse as sp
import scipy.sparse.linalg as la
import numpy as np
import matplotlib.pyplot as plt
#discretize x-axis
N = 11
x = np.linspace(-5,5,N)
print(x)
V = x * x / 2
h = len(x)/(N)
hi2 = 1./(h**2)
#discretize Schroedinger Equation, i.e. build
#banded matrix from difference equation
C0 = np.ones(N)*30. + V
C1 = np.ones(N) * -16.
C2 = np.ones(N) * 1.
diagonals = np.array([-2,-1,0,1,2])
H = sp.spdiags([C2, C1, C0,C1,C2],[-2,-1,0,1,2], N, N)
H *= hi2 * (- 1./12.) * (- 1. / 2.)
#solve for eigenvalues
EV = la.eigsh(H,return_eigenvectors = False)
#check structure of H
plt.figure()
plt.spy(H)
plt.show()
This is a visualisation of the matrix that is build by the code above. I want so set the elements in the first row zero.