I think they work as the same: Both of the mask defines which attention between query and key will not be used. And the only difference between the two choices is in which shape you are more comfortable to input the mask
According to the code, it seems like the two mask are merged/taken union so they all play the same role -- which attention between query and key will not be used. As they are taken union: the two mask inputs can be different valued if it is necessary that you are using two masks, or you can input the mask in whichever mask_args according to whose required shape is convenient: Here is part of the original code from pytorch/functional.py around line 5227 in the function multi_head_attention_forward()
...
# merge key padding and attention masks
if key_padding_mask is not None:
assert key_padding_mask.shape == (bsz, src_len), \
f"expecting key_padding_mask shape of {(bsz, src_len)}, but got {key_padding_mask.shape}"
key_padding_mask = key_padding_mask.view(bsz, 1, 1, src_len). \
expand(-1, num_heads, -1, -1).reshape(bsz * num_heads, 1, src_len)
if attn_mask is None:
attn_mask = key_padding_mask
elif attn_mask.dtype == torch.bool:
attn_mask = attn_mask.logical_or(key_padding_mask)
else:
attn_mask = attn_mask.masked_fill(key_padding_mask, float("-inf"))
...
# so here only the merged/unioned mask is used to actually compute the attention
attn_output, attn_output_weights = _scaled_dot_product_attention(q, k, v, attn_mask, dropout_p)
Please correct me if you have different opinions or I am wrong.