I have the following code, which takes the values in one column of a pandas dataframe and makes them the columns of a new data frame. The values in the first column of the dataframe become the index of the new dataframe.
In a sense, I want to turn an adjacency list into an adjacency matrix. Here's the code so far:
import pandas as pa
# Create a dataframe
oldcols = {'col1':['a','a','b','b'], 'col2':['c','d','c','d'], 'col3':[1,2,3,4]}
a = pa.DataFrame(oldcols)
# The columns of the new data frame will be the values in col2 of the original
newcols = list(set(oldcols['col2']))
rows = list(set(oldcols['col1']))
# Create the new data matrix
data = np.zeros((len(rows), len(newcols)))
# Iterate over each row and fill in the new matrix
for row in zip(a['col1'], a['col2'], a['col3']):
rowindex = rows.index(row[0])
colindex = newcols.index(row[1])
data[rowindex][colindex] = row[2]
newf = pa.DataFrame(data)
newf.columns = newcols
newf.index = rows
This works for this particular instance as follows: The original DataFrame
col1 col2 col3
0 a c 1
1 a d 2
2 b c 3
3 b d 4
is transformed to a new DataFrame that looks like
c d
a 1 2
b 3 4
It will fail if the values in col3 are not numbers. My question is, is there a more elegant/robust way of doing this?