On 64-bit systems, there's a numpy.float128
dtype. (I believe there's a float96
dtype on 32-bit systems, as well) While numpy.linalg.eig
doesn't support 128-bit floats, scipy.linalg.eig
(sort of) does.
However, none of this is going to matter, in the long run. Any general solver for an eigenvalue problem is going to be iterative, rather than exact, so you're not gaining anything by keeping the extra precision! np.linalg.eig
works for any shape, but never returns an exact solution.
If you're always solving 2x2 matrices, it's trivial to write your own solver that should be more exact. I'll show an example of this at the end...
Regardless, forging ahead into pointlessly precise memory containers:
import numpy as np
import scipy as sp
import scipy.linalg
a = np.array([[-800.21,-600.00],[-600.00,-1000.48]], dtype=np.float128)
ex = np.exp(a)
print ex
eigvals, eigvecs = sp.linalg.eig(ex)
# And to test...
check1 = ex.dot(eigvecs[:,0])
check2 = eigvals[0] * eigvecs[:,0]
print 'Checking accuracy..'
print check1, check2
print (check1 - check2).dot(check1 - check2), '<-- Should be zero'
However, you'll notice that what you get is identical to just doing np.linalg.eig(ex.astype(np.float64)
. In fact, I'm fairly sure that's what scipy
is doing, while numpy
raises an error rather than doing it silently. I could be quite wrong, though...
If you don't want to use scipy, one workaround is to rescale things after the exponentiation but before solving for the eigenvalues, cast them as "normal" floats, solve for the eigenvalues, and then recast things as float128's afterwards and rescale.
E.g.
import numpy as np
a = np.array([[-800.21,-600.00],[-600.00,-1000.48]], dtype=np.float128)
ex = np.exp(a)
factor = 1e300
ex_rescaled = (ex * factor).astype(np.float64)
eigvals, eigvecs = np.linalg.eig(ex_rescaled)
eigvals = eigvals.astype(np.float128) / factor
# And to test...
check1 = ex.dot(eigvecs[:,0])
check2 = eigvals[0] * eigvecs[:,0]
print 'Checking accuracy..'
print check1, check2
print (check1 - check2).dot(check1 - check2), '<-- Should be zero'
Finally, if you're only solving 2x2 or 3x3 matrices, you can write your own solver, which will return an exact value for those shapes of matrices.
import numpy as np
def quadratic(a,b,c):
sqrt_part = np.lib.scimath.sqrt(b**2 - 4*a*c)
root1 = (-b + sqrt_part) / (2 * a)
root2 = (-b - sqrt_part) / (2 * a)
return root1, root2
def eigvals(matrix_2x2):
vals = np.zeros(2, dtype=matrix_2x2.dtype)
a,b,c,d = matrix_2x2.flatten()
vals[:] = quadratic(1.0, -(a+d), (a*d-b*c))
return vals
def eigvecs(matrix_2x2, vals):
a,b,c,d = matrix_2x2.flatten()
vecs = np.zeros_like(matrix_2x2)
if (b == 0.0) and (c == 0.0):
vecs[0,0], vecs[1,1] = 1.0, 1.0
elif c != 0.0:
vecs[0,:] = vals - d
vecs[1,:] = c
elif b != 0:
vecs[0,:] = b
vecs[1,:] = vals - a
return vecs
def eig_2x2(matrix_2x2):
vals = eigvals(matrix_2x2)
vecs = eigvecs(matrix_2x2, vals)
return vals, vecs
a = np.array([[-800.21,-600.00],[-600.00,-1000.48]], dtype=np.float128)
ex = np.exp(a)
eigvals, eigvecs = eig_2x2(ex)
# And to test...
check1 = ex.dot(eigvecs[:,0])
check2 = eigvals[0] * eigvecs[:,0]
print 'Checking accuracy..'
print check1, check2
print (check1 - check2).dot(check1 - check2), '<-- Should be zero'
This one returns a truly exact solution, but will only work for 2x2 matrices. It's the only solution that actually benefits from the extra precision, however!
ex = np.exp(a)
seems to be out context, becauseeigvals, eigvecs = np.linalg.eig(a)
gives perfectly reasonable answer. Butex
should be treated as a 2x2 matrix, where all elements are equal to zero. Thanks – Disperseeig(a)
, should have beeneig(ex)
– Austine