When someone writes a new programming language, what do they write it IN?
Asked Answered
P

13

185

I am dabbling in PHP and getting my feet wet browsing SO, and feel compelled to ask a question that I've been wondering about for years:

When you write an entirely new programming language, what do you write it in?

It's to me a perplexing chicken & egg thing to me. What do you do? Say to yourself Today I'm going to invent a new language! and then fire up. Notepad? Are all compilers built on previously existing languages, such that were one to bother one could chart all programming languages ever devised onto one monstrous branching tree that eventually grounded out at... I don't know, something old?

Prepuce answered 27/10, 2009 at 8:59 Comment(0)
N
224

It's not a stupid question. It's an excellent question.

As already answered the short answer is, "Another language."

Well that leads to some interesting questions? What if its the very first language written for your particular piece of hardware? A very real problem for people who work on embedded devices. As already answered "a language on another computer". In fact some embedded devices will never get a compiler, their programs will always be compiled on a different computer.

But you can push it back even further. What about the first programs ever written?

Well the first compilers for "high level languages" would have been written in whats called "assembly language". Assembly language is a language where each instruction in the language corresponds to a single instruction to the CPU. Its very low level language and extremely verbose and very labor intensive to write in.

But even writing assembly language requires a program called an assembler to convert the assembly language into "machine language". We go back further. The very first assemblers were written in "machine code". A program consisting entirely of binary numbers that are a direct one-to-one correspondence with the raw language of the computer itself.

But it still doesn't end. Even a file with just raw numbers in it still needs translation. You still need to get those raw numbers in a file into the computer.

Well believe it or not the early computers had a row of switches on the front of them. You flipped the switches till they represented a binary number, then you flicked another switch and that loaded that single number into the computers memory. Then you kept going flicking switched until you had loaded a minimal computer program that could read programs from disk files or punch cards. You flicked another switch and it started the program running. When I went to university in the 80's I saw computers that had that capacity but never was given the job of loading in a program with the switches.

And even earlier than that computer programs had to be hard wired with plug boards!

Negro answered 15/8, 2011 at 5:7 Comment(7)
+1, I think this answer really fits with the spirit of the question.Crosswalk
I once took an Assembler II class and the prof asked why we chose the elective. I went for the funny answer: "because I wanted an easy A." Thought I had the best answer but we had a Honeywell plant in town and the next guy said "I write microcode all day and I wanted to learn a high-level language."Needlework
I highly recommend Code: The Hidden Language of Computer Hardware and Software. It essentially covers the same material as this answer, from vacuum tubes all the way up to compilers for high-level languages.Mundane
Computers have evolved just like human beings have, albeit in a comparatively infinitesimal amount of time.Natoshanatron
Now this will be a nonconstructive comment, but it has to be written... this is a brilliant brilliant answer in all shapes, forms and information :-)Carbylamine
@Needlework It must be an old incident, is there still someone Who writes assembler etc.Pointillism
Question is about NEW languages, not switches and sparks flipping up and down as in old movies so this answer should be moved to the place the link is pointing to, instead of making that other question in the link closed down as "duplicate" as someones imaginations already try to do because of this misplaced answer: #1654149Michaeline
D
25

The most common answer is C. Most languages are implemented in C or in a hybrid of C with callbacks and a "lexer" like Flex and parser generator like YACC. These are languages which are used for one purpose - to describe syntax of another language. Sometimes, when it comes to compiled languages, they are first implemented in C. Then the first version of the language is used to create a new version, and so on. (Like Haskell.)

Diffuse answered 27/10, 2009 at 9:6 Comment(5)
Some languages are written in assembler, like picolisp. (blog.kowalczyk.info/article/picoLisp-Arc-before-Arc.html)Diffuse
What about the programs lex/yacc (flex/bison)? Are these considered supplements for creating languages in C?Malita
Do you have anything to prove the most common answer is C?Fountainhead
I started to go through the list here: google.com/Top/Computers/Programming/Languages/Open_Source Then I accidentally closed my editor window at about language 10, and lost motivation to go through. Anyway, about half so far were implemented in C and the rest mostly bootstrapping to themselves.Diffuse
I think you have to mention Lex/Yacc (or alternatives). One does not generally start writing a language in C, but rather with a lexer and a parser which are then supported with C code.Admiralty
F
18

A lot of languages are bootstrapped- that is written in themselves. As to why you would want to do this, it is often a good idea to eat your own dogfood.

The wikipedia article I refer to discusses the chicken and egg issue. I think you will find it quite interesting.

Fountainhead answered 27/10, 2009 at 12:22 Comment(7)
Which is not possible when you're just starting out.Oak
Yes- obviously. But a lot of languages are written this way once it is possible. I wanted to point this out as nobody else had, and I feel it is an important point.Fountainhead
+1 for using the term bootstrap. It is interesting that you have to compile your compiler twice. The first time is obviously with the bare-bones compiler you have and the 2nd time with the compiler you just built. Say you added optimization to your compiler. The compiler you built can produce code with those optimizations, but it is not itself running the optimized code until you compile it again with the optimizing compiler.Heisser
@Les- Yes bootstrapping is an interesting concept.Fountainhead
Random comment here. The answer to the age old question as to who came first (chicken or the egg) is that the chicken came first. Reason being is that to reproduce/replicate something, you must first have the reproducer/replicator already in place to do the reproducing/replicating.Doublebreasted
Is not the egg the chicken?Nagana
Supposedly rna molecules came first. So neither the chicken nor the egg came first.Meteorograph
P
12

Pretty much any language, though using one suited to working with graphs and other complex data structures will make many things easier. Production compilers are often written in C or C++ for performance reasons, but languages such as OCaml, SML, Prolog, and Lisp are arguably better for prototyping the language.

There are also several "little languages" used in language design. Lex and yacc are used for specifying syntax and grammars, for example, and they compile to C. (There are ports for other languages, such as ocamllex / ocamlyacc, and many other similar tools.)

As a special case, new Lisp dialects are often built on existing Lisp implementations, since they can piggyback on most of the same infrastructure. Writing a Scheme interpreter can be done in Scheme in under a page of code, at which point one can easily add new features.

Fundamentally, compilers are just programs that read in something and translate it to something else - converting LaTeX source to DVI, converting C code to assembly and then to machine language, converting a grammar specification to C code for a parser, etc. Its designer specifies the structure of the source format (parsing), what those structures mean, how to simplify the data (optimizing), and the kind of output to generate. Interpreters read the source and execute it directly. (Interpreters are typically simpler to write, but much slower.)

Pierro answered 27/10, 2009 at 12:8 Comment(0)
E
7

"Writing a new programming language" technically doesn't involve any code. It's just coming up with a specification for what your language looks like and how it works. Once you have an idea of what your language is like, you can write translators and interpreters to actually make your language "work".

A translator inputs a program in one language and outputs an equivalent program in another language. An interpreter inputs a program in some language and runs it.

For example, a C compiler typically translates C source code (the input language) to an assembly language program (the output language). The assembler then takes the assembly language program and produces machine language. Once you have your output, you don't need the translators to run your program. Since you now have a machine language program, the CPU acts as the interpreter.

Many languages are implemented differently. For example, javac is a translator that converts Java source code to JVM bytecode. The JVM is an interpreter [1] that runs Java bytecode. After you run javac and get bytecode, you don't need javac anymore. However, whenever you want to run your program, you'll need the JVM.

The fact that translators don't need to be kept around to run a program is what makes it possible to "bootstrap" your language without having it end up running "on top of" layers and layers of other languages.

[1] Most JVMs do translation behind the scenes, but they're not really translators in that the interface to the JVM is not "input language -> output language".

Emmanuelemmeline answered 2/4, 2011 at 1:50 Comment(0)
K
5

Actually you can write in almost any language you like to. There's nothing that prevents you from writing a C compiler in Ruby. "All" you have to do is parse the program and emit the corresponding machine code. If you can read/write files, your programming language will probably suffice.

If you're starting from scratch on a new platform, you can do cross-compiling: write a compiler for your new platform, that runs in Java or natively on x86. Develop on your PC and then transfer the program to your new target platform.

The most basic compilers are probably Assembler and C.

Kampong answered 27/10, 2009 at 9:36 Comment(2)
This "any" language should however support recursive calls. Otherwise implementing a syntax analyzer and a parser is going to be a real challenge.Demobilize
If you select an unsuited language for a task, it's your own fault. This can happen for any project, not just compilers/interpreters.Kampong
N
4

Generally you can use just about whatever language you like. PHP was written in C, for example. If you have no access to any compiler whatsoever, you're going to have to resort to writing assembly language and compiling it to machine code by hand.

Nettles answered 27/10, 2009 at 9:4 Comment(2)
You don't have to compile machine code. it is the native language of the CPU by definition.Entelechy
True. What I meant to say was "compile the machine code from assembly language or something similar by hand". I could be wrong, but I'm guessing few people just type in the code as binary/hex straight away.Nettles
D
4

Many languages were first written in another available language and then reimplemented in itself and bootstrapped that way (or just kept the implementation in the foreign language, like PHP and perl), but some languages, like the first assembler was hand compiled to machine code like the first C-compiler was hand compiled to assembly.

I've been interested in bootstrapping ever since I read about it. To learn more I tried doing it myself by writing my own superset of BF, which i called EBF, in itself. the first version of EBF had 3 extra primitives and I hand compiled the first binary. I found a two step rhythm when doing so. I implemented a feature in the current language in one release and had a sweet release where I rewrote the code to utilize the implemented feature. The language was expressive enough to be used to make a LISP interpreter.

I have the hand compiled version together with the source in the first release tag and the code is quite small. The last version is 12 times bigger in size and the code and allows for more compact code so hand compiling the current version would be hard to get right.

Edmund Grimley Evans did something similar with his HEX language

One of the interesting things about doing this yourself is that you understand why some things are as they are. My code was product if small incremental adjustments an it looks more like it has evolved rather than been designed from scratch. I keep that in mind when reading code today which I think looks a little off.

Dariodariole answered 27/5, 2013 at 16:42 Comment(0)
R
1

Usually with a general-purpose programming language suitable for systems development, e.g. C, Haskell, ML, Lisp, etc., but the list of options is long. Also, usually with some domain-specific languages for language implementation, i.e. parser and lexical analyzer generators, intermediate languages like LLVM, etc. And probably some shell scripts, testing frameworks, and a build configuration system, e.g. autoconf.

Rounce answered 27/10, 2009 at 21:34 Comment(0)
V
1

Most compiler were wriiten C or a c like program if not c then assembly lang is the way to go However when writing a new lang from scratch and you do not have a macro lib or source code from a prototype language you have to define your own functions Now in What Language? You can just write a Form "of source code called psedocode to the machine it looks like a bnf grammar from the object oriented structured lang spec like Fortran basic algo lisp. So image writing a cross code resembling any of these language syntax That's psedo code

Vanir answered 31/8, 2013 at 23:45 Comment(1)
I don't believe psedo code is supposed to be machine readableGlomerulonephritis
J
1

What are programming languages in general?

programming languages are a just a way to talk to computers. roughly speaking at first because computers could only understand zeros and ones (due to the fact that computers are made of transistors as switches which could only take two states, we call these two states 0 and 1) and working with 0,1 was hard for us as humans so computer scientists decided to do a one-to-one mapping from every instruction in binary(0,1) to a more human readable form which they called it assembly language.

for example if we had an instruction like:

11001101

in assembly it would be called:

LOAD_A 15

which means that load the content of register a into memory location 15. as i said it was just a convention like choosing 0 and 1 for two states of the transistors or anything else in the computer.in this way having a program with 50 instructions , remembering the assembly language would be easier . so the user would write the assembly code and some program (assembler in this case) would translate the codes to binary instructions or machine language as they call it.

but then with the computers getting improved every day there was room for more complicated programs with more instructions, say 10000.

in this case a one-to-one mapping like assembly wouldn't work, so other high level programming languages were created. they said for example if for a relation with I/O devices for printing something on the screen created by the user takes about 80 instructions , let us do something in here and we could package all this code into one library and call it for example printf and also create another program which could translate this printf in here to the related assembly code and from there the assembly would do the rest. so they call it compiler.

so now every user who wants to just print something on the screen he wouldn't have to write all the instructions in binary or assembly he just types printf("something") and all the programs like the compiler and assembler would do the rest. now later other longer codes would be packaged in the same way to just facilitate the work of other people as you see that you could just simplify a thousands line of code into one code in python and pack it for the use of other people.

so let's say that you have packed a lot of different codes in python and created a module(libray, package or anything that you want to call it) and you call that module mgh(just my name). now let's say we have created this mgh somehow that any one who says:

import mgh
mgh.connect(ip,port.data)...

could easily connect to a remote server with the ip and port number specified and send the data afterwards(or something like that). now people could do all of it using one single line, but what that happens is that a lot of codes are getting executed which have been retrieved from the mgh file. and packaging it has not been for speeding up the process of execution but rather facilitating other programmers works. so in here if someone wants to use your code first he should import the file and then the python interpreter would recognize all the code in it and so it could interpret the code.

now if you want to create a programming language and you want to execute it , first it needs a translation, for example let's say that you create a program which could understand the syntax and convert it to c , in this case after it has been translated to c , the rest would be taken care of , by the c compiler , then assembler , linker, ... . even though you would have to pay the price of being slower since it has to be converted to c first.

now one other thing that you could do is to create a program which could translate all the code to the equivalent assembly language just like what happens with c but in this case the program could do it directly and from there the rest would be done by the linker. we know that this program is called compiler.

so what i am talking about is that, the only code that the system understands is 0,1 , so somehow you should convert you syntax to that, now in our operating systems a lot of different programs like assembler, linker and ... have been created to tell you that if you could convert your code to assembly they could take care of the rest or as i said you could even use other programming languages compilers by converting your code to that language.

Jat answered 23/6, 2020 at 6:31 Comment(0)
N
0

Even further binary ,or assembly operations must be translated into functions, thats the assemblers/compilers job, then into object,from data and functions, if you don't have a source file to see" how these objects functionality should be represented in your language implementation ,Then you have to recognize "see" implement, or define your own functions ,procedures, and data structures, Which requires a lot of knowledge, you need to ask yourself what is a function.Your mind then becomes the language simulation.This Separate a Master programmer from the rest.

Nipping answered 12/12, 2013 at 1:2 Comment(0)
F
0

I too had this question few months back. And I read few articles and watched some videos which helped me to start writing my own language called soft. Its not complete yet but I learned a lot of stuff from this journey.

Basic things you should know is how compiler works when it has to execute a code snippet. Compiler has a lot of phases like lexical analysis, semantic analyzer, AST(Abstract Syntax Tree) etc.

What I did in my new language can be found here - http://www.singhajit.com/writing-a-new-programming-language/

If you are writing a language for first time then all the best and you have a long way to go.

Faux answered 14/8, 2015 at 15:25 Comment(0)

© 2022 - 2024 — McMap. All rights reserved.