Q: If I encrypt my .class files and use a custom classloader to load and decrypt them on the fly, will this prevent decompilation?
A: The problem of preventing Java byte-code decompilation is almost as old the language itself. Despite a range of obfuscation tools available on the market, novice Java programmers continue to think of new and clever ways to protect their intellectual property. In this Java Q&A installment, I dispel some myths around an idea frequently rehashed in discussion forums.
The extreme ease with which Java .class files can be reconstructed into Java sources that closely resemble the originals has a lot to do with Java byte-code design goals and trade-offs. Among other things, Java byte code was designed for compactness, platform independence, network mobility, and ease of analysis by byte-code interpreters and JIT (just-in-time)/HotSpot dynamic compilers. Arguably, the compiled .class files express the programmer's intent so clearly they could be easier to analyze than the original source code.
Several things can be done, if not to prevent decompilation completely, at least to make it more difficult. For example, as a post-compilation step you could massage the .class data to make the byte code either harder to read when decompiled or harder to decompile into valid Java code (or both). Techniques like performing extreme method name overloading work well for the former, and manipulating control flow to create control structures not possible to represent through Java syntax work well for the latter. The more successful commercial obfuscators use a mix of these and other techniques.
Unfortunately, both approaches must actually change the code the JVM will run, and many users are afraid (rightfully so) that this transformation may add new bugs to their applications. Furthermore, method and field renaming can cause reflection calls to stop working. Changing actual class and package names can break several other Java APIs (JNDI (Java Naming and Directory Interface), URL providers, etc.). In addition to altered names, if the association between class byte-code offsets and source line numbers is altered, recovering the original exception stack traces could become difficult.
Then there is the option of obfuscating the original Java source code. But fundamentally this causes a similar set of problems.
Encrypt, not obfuscate?
Perhaps the above has made you think, "Well, what if instead of manipulating byte code I encrypt all my classes after compilation and decrypt them on the fly inside the JVM (which can be done with a custom classloader)? Then the JVM executes my original byte code and yet there is nothing to decompile or reverse engineer, right?"
Unfortunately, you would be wrong, both in thinking that you were the first to come up with this idea and in thinking that it actually works. And the reason has nothing to do with the strength of your encryption scheme.