I'm the dill
author. Yes, dill
is slower typically, but that's the penalty you pay for more robust serialization. If you are serializing a lot of classes and functions, then you might want to try one of the dill
variants in dill.settings
If you use byref=True
then dill
will pickle several objects by reference (which is faster then the default). Other settings trade off picklibility for speed in selected objects.
In [1]: import dill
In [2]: f = lambda x:x
In [3]: %timeit dill.loads(dill.dumps(f))
1000 loops, best of 3: 286 us per loop
In [4]: dill.settings['byref'] = True
In [5]: %timeit dill.loads(dill.dumps(f))
1000 loops, best of 3: 237 us per loop
In [6]: dill.settings
Out[6]: {'byref': True, 'fmode': 0, 'protocol': 2, 'recurse': False}
In [7]: dill.settings['recurse'] = True
In [8]: %timeit dill.loads(dill.dumps(f))
1000 loops, best of 3: 408 us per loop
In [9]: class Foo(object):
...: x = 1
...: def bar(self, y):
...: return y + self.x
...:
In [10]: g = Foo()
In [11]: %timeit dill.loads(dill.dumps(g))
10000 loops, best of 3: 87.6 us per loop
In [12]: dill.settings['recurse'] = False
In [13]: %timeit dill.loads(dill.dumps(g))
10000 loops, best of 3: 87.4 us per loop
In [14]: dill.settings['byref'] = False
In [15]: %timeit dill.loads(dill.dumps(g))
1000 loops, best of 3: 499 us per loop
In [16]:
dill
is too slow compared to cPickle. – Northamptonshireserialization / desiralization
ratio is<< 1
– Wonted