Using the Logic Monad in Haskell
Asked Answered
S

2

24

Recently, I implemented a naïve DPLL Sat Solver in Haskell, adapted from John Harrison's Handbook of Practical Logic and Automated Reasoning.

DPLL is a variety of backtrack search, so I want to experiment with using the Logic monad from Oleg Kiselyov et al. I don't really understand what I need to change, however.

Here's the code I've got.

  • What code do I need to change to use the Logic monad?
  • Bonus: Is there any concrete performance benefit to using the Logic monad?

{-# LANGUAGE MonadComprehensions #-}
module DPLL where
import Prelude hiding (foldr)
import Control.Monad (join,mplus,mzero,guard,msum)
import Data.Set.Monad (Set, (\\), member, partition, toList, foldr)
import Data.Maybe (listToMaybe)

-- "Literal" propositions are either true or false
data Lit p = T p | F p deriving (Show,Ord,Eq)

neg :: Lit p -> Lit p
neg (T p) = F p
neg (F p) = T p

-- We model DPLL like a sequent calculus
-- LHS: a set of assumptions / partial model (set of literals)
-- RHS: a set of goals 
data Sequent p = (Set (Lit p)) :|-: Set (Set (Lit p)) deriving Show

{- --------------------------- Goal Reduction Rules -------------------------- -}
{- "Unit Propogation" takes literal x and A :|-: B to A,x :|-: B',
 - where B' has no clauses with x, 
 - and all instances of -x are deleted -}
unitP :: Ord p => Lit p -> Sequent p -> Sequent p
unitP x (assms :|-:  clauses) = (assms' :|-:  clauses')
  where
    assms' = (return x) `mplus` assms
    clauses_ = [ c | c <- clauses, not (x `member` c) ]
    clauses' = [ [ u | u <- c, u /= neg x] | c <- clauses_ ]

{- Find literals that only occur positively or negatively
 - and perform unit propogation on these -}
pureRule :: Ord p => Sequent p -> Maybe (Sequent p)
pureRule sequent@(_ :|-:  clauses) = 
  let 
    sign (T _) = True
    sign (F _) = False
    -- Partition the positive and negative formulae
    (positive,negative) = partition sign (join clauses)
    -- Compute the literals that are purely positive/negative
    purePositive = positive \\ (fmap neg negative)
    pureNegative = negative \\ (fmap neg positive)
    pure = purePositive `mplus` pureNegative 
    -- Unit Propagate the pure literals
    sequent' = foldr unitP sequent pure
  in if (pure /= mzero) then Just sequent'
     else Nothing

{- Add any singleton clauses to the assumptions 
 - and simplify the clauses -}
oneRule :: Ord p => Sequent p -> Maybe (Sequent p)
oneRule sequent@(_ :|-:  clauses) = 
   do
   -- Extract literals that occur alone and choose one
   let singletons = join [ c | c <- clauses, isSingle c ]
   x <- (listToMaybe . toList) singletons
   -- Return the new simplified problem
   return $ unitP x sequent
   where
     isSingle c = case (toList c) of { [a] -> True ; _ -> False }

{- ------------------------------ DPLL Algorithm ----------------------------- -}
dpll :: Ord p => Set (Set (Lit p)) -> Maybe (Set (Lit p))
dpll goalClauses = dpll' $ mzero :|-: goalClauses
  where 
     dpll' sequent@(assms :|-: clauses) = do 
       -- Fail early if falsum is a subgoal
       guard $ not (mzero `member` clauses)
       case (toList . join) $ clauses of
         -- Return the assumptions if there are no subgoals left
         []  -> return assms
         -- Otherwise try various tactics for resolving goals
         x:_ -> dpll' =<< msum [ pureRule sequent
                               , oneRule sequent
                               , return $ unitP x sequent
                               , return $ unitP (neg x) sequent ]
Slime answered 27/7, 2012 at 21:34 Comment(1)
@DanielWagner: Really? The part that does the backtracking is the msum - I sort of thought I just needed to modify dpll'...?Slime
C
18

Ok, changing your code to use Logic turned out to be entirely trivial. I went through and rewrote everything to use plain Set functions rather than the Set monad, because you're not really using Set monadically in a uniform way, and certainly not for the backtracking logic. The monad comprehensions were also more clearly written as maps and filters and the like. This didn't need to happen, but it did help me sort through what was happening, and it certainly made evident that the one real remaining monad, that used for backtracking, was just Maybe.

In any case, you can just generalize the type signature of pureRule, oneRule, and dpll to operate over not just Maybe, but any m with the constraint MonadPlus m =>.

Then, in pureRule, your types won't match because you construct Maybes explicitly, so go and change it a bit:

in if (pure /= mzero) then Just sequent'
   else Nothing

becomes

in if (not $ S.null pure) then return sequent' else mzero

And in oneRule, similarly change the usage of listToMaybe to an explicit match so

   x <- (listToMaybe . toList) singletons

becomes

 case singletons of
   x:_ -> return $ unitP x sequent  -- Return the new simplified problem
   [] -> mzero

And, outside of the type signature change, dpll needs no changes at all!

Now, your code operates over both Maybe and Logic!

to run the Logic code, you can use a function like the following:

dpllLogic s = observe $ dpll' s

You can use observeAll or the like to see more results.

For reference, here's the complete working code:

{-# LANGUAGE MonadComprehensions #-}
module DPLL where
import Prelude hiding (foldr)
import Control.Monad (join,mplus,mzero,guard,msum)
import Data.Set (Set, (\\), member, partition, toList, foldr)
import qualified Data.Set as S
import Data.Maybe (listToMaybe)
import Control.Monad.Logic

-- "Literal" propositions are either true or false
data Lit p = T p | F p deriving (Show,Ord,Eq)

neg :: Lit p -> Lit p
neg (T p) = F p
neg (F p) = T p

-- We model DPLL like a sequent calculus
-- LHS: a set of assumptions / partial model (set of literals)
-- RHS: a set of goals
data Sequent p = (Set (Lit p)) :|-: Set (Set (Lit p)) --deriving Show

{- --------------------------- Goal Reduction Rules -------------------------- -}
{- "Unit Propogation" takes literal x and A :|-: B to A,x :|-: B',
 - where B' has no clauses with x,
 - and all instances of -x are deleted -}
unitP :: Ord p => Lit p -> Sequent p -> Sequent p
unitP x (assms :|-:  clauses) = (assms' :|-:  clauses')
  where
    assms' = S.insert x assms
    clauses_ = S.filter (not . (x `member`)) clauses
    clauses' = S.map (S.filter (/= neg x)) clauses_

{- Find literals that only occur positively or negatively
 - and perform unit propogation on these -}
pureRule sequent@(_ :|-:  clauses) =
  let
    sign (T _) = True
    sign (F _) = False
    -- Partition the positive and negative formulae
    (positive,negative) = partition sign (S.unions . S.toList $ clauses)
    -- Compute the literals that are purely positive/negative
    purePositive = positive \\ (S.map neg negative)
    pureNegative = negative \\ (S.map neg positive)
    pure = purePositive `S.union` pureNegative
    -- Unit Propagate the pure literals
    sequent' = foldr unitP sequent pure
  in if (not $ S.null pure) then return sequent'
     else mzero

{- Add any singleton clauses to the assumptions
 - and simplify the clauses -}
oneRule sequent@(_ :|-:  clauses) =
   do
   -- Extract literals that occur alone and choose one
   let singletons = concatMap toList . filter isSingle $ S.toList clauses
   case singletons of
     x:_ -> return $ unitP x sequent  -- Return the new simplified problem
     [] -> mzero
   where
     isSingle c = case (toList c) of { [a] -> True ; _ -> False }

{- ------------------------------ DPLL Algorithm ----------------------------- -}
dpll goalClauses = dpll' $ S.empty :|-: goalClauses
  where
     dpll' sequent@(assms :|-: clauses) = do
       -- Fail early if falsum is a subgoal
       guard $ not (S.empty `member` clauses)
       case concatMap S.toList $ S.toList clauses of
         -- Return the assumptions if there are no subgoals left
         []  -> return assms
         -- Otherwise try various tactics for resolving goals
         x:_ -> dpll' =<< msum [ pureRule sequent
                                , oneRule sequent
                                , return $ unitP x sequent
                                , return $ unitP (neg x) sequent ]

dpllLogic s = observe $ dpll s
Coin answered 31/7, 2012 at 17:41 Comment(0)
S
8

Is there any concrete performance benefit to using the Logic monad?

TL;DR: Not that I can find; it appears that Maybe outperforms Logic since it has less overhead.


I decided to implement a simple benchmark to check the performance of Logic versus Maybe. In my test, I randomly construct 5000 CNFs with n clauses, each clause containing three literals. Performance is evaluated as the number of clauses n is varied.

In my code, I modified dpllLogic as follows:

dpllLogic s = listToMaybe $ observeMany 1 $ dpll s

I also tested modifying dpll with fair disjunction, like so:

dpll goalClauses = dpll' $ S.empty :|-: goalClauses
  where
     dpll' sequent@(assms :|-: clauses) = do
       -- Fail early if falsum is a subgoal
       guard $ not (S.empty `member` clauses)
       case concatMap S.toList $ S.toList clauses of
         -- Return the assumptions if there are no subgoals left
         []  -> return assms
         -- Otherwise try various tactics for resolving goals
         x:_ -> msum [ pureRule sequent
                     , oneRule sequent
                     , return $ unitP x sequent
                     , return $ unitP (neg x) sequent ]
                >>- dpll'

I then tested the using Maybe, Logic, and Logic with fair disjunction.

Here are the benchmark results for this test: Maybe Monad v. Logic Monad v. Logic Monad with Fair Disjunction

As we can see, Logic with or without fair disjunction in this case makes no difference. The dpll solve using the Maybe monad appears to run in linear time in n, while using the Logic monad incurs additional overhead. It appears that the overhead incurred plateaus off.

Here is the Main.hs file used to generate these test. Someone wishing to reproduce these benchmarks might wish to review Haskell's notes on profiling:

module Main where
import DPLL
import System.Environment (getArgs)
import System.Random
import Control.Monad (replicateM)
import Data.Set (fromList)

randLit = do let clauses = [ T p | p <- ['a'..'f'] ]
                        ++ [ F p | p <- ['a'..'f'] ]
             r <- randomRIO (0, (length clauses) - 1)
             return $ clauses !! r

randClause n = fmap fromList $ replicateM n $ fmap fromList $ replicateM 3 randLit

main = do args <- getArgs
          let n = read (args !! 0) :: Int
          clauses <- replicateM 5000 $ randClause n
          -- To use the Maybe monad
          --let satisfiable = filter (/= Nothing) $ map dpll clauses
          let satisfiable = filter (/= Nothing) $ map dpllLogic clauses
          putStrLn $ (show $ length satisfiable) ++ " satisfiable out of "
                  ++ (show $ length clauses)
Slime answered 6/8, 2012 at 4:37 Comment(0)

© 2022 - 2024 — McMap. All rights reserved.