What is "unk" in the pretrained GloVe vector files (e.g. glove.6B.50d.txt)?
Asked Answered
W

2

24

I found "unk" token in the glove vector file glove.6B.50d.txt downloaded from https://nlp.stanford.edu/projects/glove/. Its value is as follows:

unk -0.79149 0.86617 0.11998 0.00092287 0.2776 -0.49185 0.50195 0.00060792 -0.25845 0.17865 0.2535 0.76572 0.50664 0.4025 -0.0021388 -0.28397 -0.50324 0.30449 0.51779 0.01509 -0.35031 -1.1278 0.33253 -0.3525 0.041326 1.0863 0.03391 0.33564 0.49745 -0.070131 -1.2192 -0.48512 -0.038512 -0.13554 -0.1638 0.52321 -0.31318 -0.1655 0.11909 -0.15115 -0.15621 -0.62655 -0.62336 -0.4215 0.41873 -0.92472 1.1049 -0.29996 -0.0063003 0.3954

Is it a token to be used for unknown words or is it some kind of abbreviation?

Warrenwarrener answered 12/3, 2018 at 16:20 Comment(0)
M
31

The unk token in the pretrained GloVe files is not an unknown token!

See this google groups thread where Jeffrey Pennington (GloVe author) writes:

The pre-trained vectors do not have an unknown token, and currently the code just ignores out-of-vocabulary words when producing the co-occurrence counts.

It's an embedding learned like any other on occurrences of "unk" in the corpus (which appears to happen occasionally!)

Instead, Pennington suggests (in the same post):

...I've found that just taking an average of all or a subset of the word vectors produces a good unknown vector.

You can do that with the following code (should work with any pretrained GloVe file):

import numpy as np

GLOVE_FILE = 'glove.6B.50d.txt'

# Get number of vectors and hidden dim
with open(GLOVE_FILE, 'r') as f:
    for i, line in enumerate(f):
        pass
n_vec = i + 1
hidden_dim = len(line.split(' ')) - 1

vecs = np.zeros((n_vec, hidden_dim), dtype=np.float32)

with open(GLOVE_FILE, 'r') as f:
    for i, line in enumerate(f):
        vecs[i] = np.array([float(n) for n in line.split(' ')[1:]], dtype=np.float32)

average_vec = np.mean(vecs, axis=0)
print(average_vec)

For glove.6B.50d.txt this gives:

[-0.12920076 -0.28866628 -0.01224866 -0.05676644 -0.20210965 -0.08389011
  0.33359843  0.16045167  0.03867431  0.17833012  0.04696583 -0.00285802
  0.29099807  0.04613704 -0.20923874 -0.06613114 -0.06822549  0.07665912
  0.3134014   0.17848536 -0.1225775  -0.09916984 -0.07495987  0.06413227
  0.14441176  0.60894334  0.17463093  0.05335403 -0.01273871  0.03474107
 -0.8123879  -0.04688699  0.20193407  0.2031118  -0.03935686  0.06967544
 -0.01553638 -0.03405238 -0.06528071  0.12250231  0.13991883 -0.17446303
 -0.08011883  0.0849521  -0.01041659 -0.13705009  0.20127155  0.10069408
  0.00653003  0.01685157]

And because it is fairly compute intensive to do this with the larger glove files, I went ahead and computed the vector for glove.840B.300d.txt for you:

0.22418134 -0.28881392 0.13854356 0.00365387 -0.12870757 0.10243822 0.061626635 0.07318011 -0.061350107 -1.3477012 0.42037755 -0.063593924 -0.09683349 0.18086134 0.23704372 0.014126852 0.170096 -1.1491593 0.31497982 0.06622181 0.024687296 0.076693475 0.13851812 0.021302193 -0.06640582 -0.010336159 0.13523154 -0.042144544 -0.11938788 0.006948221 0.13333307 -0.18276379 0.052385733 0.008943111 -0.23957317 0.08500333 -0.006894406 0.0015864656 0.063391194 0.19177166 -0.13113557 -0.11295479 -0.14276934 0.03413971 -0.034278486 -0.051366422 0.18891625 -0.16673574 -0.057783455 0.036823478 0.08078679 0.022949161 0.033298038 0.011784158 0.05643189 -0.042776518 0.011959623 0.011552498 -0.0007971594 0.11300405 -0.031369694 -0.0061559738 -0.009043574 -0.415336 -0.18870236 0.13708843 0.005911723 -0.113035575 -0.030096142 -0.23908928 -0.05354085 -0.044904727 -0.20228513 0.0065645403 -0.09578946 -0.07391877 -0.06487607 0.111740574 -0.048649278 -0.16565254 -0.052037314 -0.078968436 0.13684988 0.0757494 -0.006275573 0.28693774 0.52017444 -0.0877165 -0.33010918 -0.1359622 0.114895485 -0.09744406 0.06269521 0.12118575 -0.08026362 0.35256687 -0.060017522 -0.04889904 -0.06828978 0.088740796 0.003964443 -0.0766291 0.1263925 0.07809314 -0.023164088 -0.5680669 -0.037892066 -0.1350967 -0.11351585 -0.111434504 -0.0905027 0.25174105 -0.14841858 0.034635577 -0.07334565 0.06320108 -0.038343467 -0.05413284 0.042197507 -0.090380974 -0.070528865 -0.009174437 0.009069661 0.1405178 0.02958134 -0.036431845 -0.08625681 0.042951006 0.08230793 0.0903314 -0.12279937 -0.013899368 0.048119213 0.08678239 -0.14450377 -0.04424887 0.018319942 0.015026873 -0.100526 0.06021201 0.74059093 -0.0016333034 -0.24960588 -0.023739101 0.016396184 0.11928964 0.13950661 -0.031624354 -0.01645025 0.14079992 -0.0002824564 -0.08052984 -0.0021310581 -0.025350995 0.086938225 0.14308536 0.17146006 -0.13943303 0.048792403 0.09274929 -0.053167373 0.031103406 0.012354865 0.21057427 0.32618305 0.18015954 -0.15881181 0.15322933 -0.22558987 -0.04200665 0.0084689725 0.038156632 0.15188617 0.13274793 0.113756925 -0.095273495 -0.049490947 -0.10265804 -0.27064866 -0.034567792 -0.018810693 -0.0010360252 0.10340131 0.13883452 0.21131058 -0.01981019 0.1833468 -0.10751636 -0.03128868 0.02518242 0.23232952 0.042052146 0.11731903 -0.15506615 0.0063580726 -0.15429358 0.1511722 0.12745973 0.2576985 -0.25486213 -0.0709463 0.17983761 0.054027 -0.09884228 -0.24595179 -0.093028545 -0.028203879 0.094398156 0.09233813 0.029291354 0.13110267 0.15682974 -0.016919162 0.23927948 -0.1343307 -0.22422817 0.14634751 -0.064993896 0.4703685 -0.027190214 0.06224946 -0.091360025 0.21490277 -0.19562101 -0.10032754 -0.09056772 -0.06203493 -0.18876675 -0.10963594 -0.27734384 0.12616494 -0.02217992 -0.16058226 -0.080475815 0.026953284 0.110732645 0.014894041 0.09416802 0.14299914 -0.1594008 -0.066080004 -0.007995227 -0.11668856 -0.13081996 -0.09237365 0.14741232 0.09180138 0.081735 0.3211204 -0.0036552632 -0.047030564 -0.02311798 0.048961394 0.08669574 -0.06766279 -0.50028914 -0.048515294 0.14144728 -0.032994404 -0.11954345 -0.14929578 -0.2388355 -0.019883996 -0.15917352 -0.052084364 0.2801028 -0.0029121689 -0.054581646 -0.47385484 0.17112483 -0.12066923 -0.042173345 0.1395337 0.26115036 0.012869649 0.009291686 -0.0026459037 -0.075331464 0.017840583 -0.26869613 -0.21820338 -0.17084768 -0.1022808 -0.055290595 0.13513643 0.12362477 -0.10980586 0.13980341 -0.20233242 0.08813751 0.3849736 -0.10653763 -0.06199595 0.028849555 0.03230154 0.023856193 0.069950655 0.19310954 -0.077677034 -0.144811
Mental answered 11/12, 2018 at 4:22 Comment(1)
This is interesting guidance from the author, but it also seems to ignore the relative frequency of the words in a given corpus. In other words, this is the center of mass, not the center of gravity, which is deeper. Do you agree with my assessment, and if so, what are some alternatives you might recommend? For example, why not simply use the origin?Preparator
S
2

Since I can't comment, writing another answer.

If anyone's having trouble using the above vector given by @jayelm because copy pasting won't work. I am writing 2 lines of code that will give you the vector ready to be used in python.

vec_string = '0.22418134 -0.28881392 0.13854356 0.00365387 -0.12870757 0.10243822 0.061626635 0.07318011 -0.061350107 -1.3477012 0.42037755 -0.063593924 -0.09683349 0.18086134 0.23704372 0.014126852 0.170096 -1.1491593 0.31497982 0.06622181 0.024687296 0.076693475 0.13851812 0.021302193 -0.06640582 -0.010336159 0.13523154 -0.042144544 -0.11938788 0.006948221 0.13333307 -0.18276379 0.052385733 0.008943111 -0.23957317 0.08500333 -0.006894406 0.0015864656 0.063391194 0.19177166 -0.13113557 -0.11295479 -0.14276934 0.03413971 -0.034278486 -0.051366422 0.18891625 -0.16673574 -0.057783455 0.036823478 0.08078679 0.022949161 0.033298038 0.011784158 0.05643189 -0.042776518 0.011959623 0.011552498 -0.0007971594 0.11300405 -0.031369694 -0.0061559738 -0.009043574 -0.415336 -0.18870236 0.13708843 0.005911723 -0.113035575 -0.030096142 -0.23908928 -0.05354085 -0.044904727 -0.20228513 0.0065645403 -0.09578946 -0.07391877 -0.06487607 0.111740574 -0.048649278 -0.16565254 -0.052037314 -0.078968436 0.13684988 0.0757494 -0.006275573 0.28693774 0.52017444 -0.0877165 -0.33010918 -0.1359622 0.114895485 -0.09744406 0.06269521 0.12118575 -0.08026362 0.35256687 -0.060017522 -0.04889904 -0.06828978 0.088740796 0.003964443 -0.0766291 0.1263925 0.07809314 -0.023164088 -0.5680669 -0.037892066 -0.1350967 -0.11351585 -0.111434504 -0.0905027 0.25174105 -0.14841858 0.034635577 -0.07334565 0.06320108 -0.038343467 -0.05413284 0.042197507 -0.090380974 -0.070528865 -0.009174437 0.009069661 0.1405178 0.02958134 -0.036431845 -0.08625681 0.042951006 0.08230793 0.0903314 -0.12279937 -0.013899368 0.048119213 0.08678239 -0.14450377 -0.04424887 0.018319942 0.015026873 -0.100526 0.06021201 0.74059093 -0.0016333034 -0.24960588 -0.023739101 0.016396184 0.11928964 0.13950661 -0.031624354 -0.01645025 0.14079992 -0.0002824564 -0.08052984 -0.0021310581 -0.025350995 0.086938225 0.14308536 0.17146006 -0.13943303 0.048792403 0.09274929 -0.053167373 0.031103406 0.012354865 0.21057427 0.32618305 0.18015954 -0.15881181 0.15322933 -0.22558987 -0.04200665 0.0084689725 0.038156632 0.15188617 0.13274793 0.113756925 -0.095273495 -0.049490947 -0.10265804 -0.27064866 -0.034567792 -0.018810693 -0.0010360252 0.10340131 0.13883452 0.21131058 -0.01981019 0.1833468 -0.10751636 -0.03128868 0.02518242 0.23232952 0.042052146 0.11731903 -0.15506615 0.0063580726 -0.15429358 0.1511722 0.12745973 0.2576985 -0.25486213 -0.0709463 0.17983761 0.054027 -0.09884228 -0.24595179 -0.093028545 -0.028203879 0.094398156 0.09233813 0.029291354 0.13110267 0.15682974 -0.016919162 0.23927948 -0.1343307 -0.22422817 0.14634751 -0.064993896 0.4703685 -0.027190214 0.06224946 -0.091360025 0.21490277 -0.19562101 -0.10032754 -0.09056772 -0.06203493 -0.18876675 -0.10963594 -0.27734384 0.12616494 -0.02217992 -0.16058226 -0.080475815 0.026953284 0.110732645 0.014894041 0.09416802 0.14299914 -0.1594008 -0.066080004 -0.007995227 -0.11668856 -0.13081996 -0.09237365 0.14741232 0.09180138 0.081735 0.3211204 -0.0036552632 -0.047030564 -0.02311798 0.048961394 0.08669574 -0.06766279 -0.50028914 -0.048515294 0.14144728 -0.032994404 -0.11954345 -0.14929578 -0.2388355 -0.019883996 -0.15917352 -0.052084364 0.2801028 -0.0029121689 -0.054581646 -0.47385484 0.17112483 -0.12066923 -0.042173345 0.1395337 0.26115036 0.012869649 0.009291686 -0.0026459037 -0.075331464 0.017840583 -0.26869613 -0.21820338 -0.17084768 -0.1022808 -0.055290595 0.13513643 0.12362477 -0.10980586 0.13980341 -0.20233242 0.08813751 0.3849736 -0.10653763 -0.06199595 0.028849555 0.03230154 0.023856193 0.069950655 0.19310954 -0.077677034 -0.144811'
import numpy as np
average_glove_vector = np.array(vec_string.split(" "))
print(average_glove_vector)
Strontian answered 1/4, 2019 at 13:33 Comment(0)

© 2022 - 2024 — McMap. All rights reserved.