I know that LIBSVM only allows one-vs-one classification when it comes to multi-class SVM. However, I would like to tweak it a bit to perform one-against-all classification. I have tried to perform one-against-all below. Is this the correct approach?
The code:
TrainLabel;TrainVec;TestVec;TestLaBel;
u=unique(TrainLabel);
N=length(u);
if(N>2)
itr=1;
classes=0;
while((classes~=1)&&(itr<=length(u)))
c1=(TrainLabel==u(itr));
newClass=c1;
model = svmtrain(TrainLabel, TrainVec, '-c 1 -g 0.00154');
[predict_label, accuracy, dec_values] = svmpredict(TestLabel, TestVec, model);
itr=itr+1;
end
itr=itr-1;
end
I might have done some mistakes. I would like to hear some feedback. Thanks.
Second Part: As grapeot said : I need to do Sum-pooling (or voting as a simplified solution) to come up with the final answer. I am not sure how to do it. I need some help on it; I saw the python file but still not very sure. I need some help.
'-c 1 -g 0.00153'
(you lacked the ending single quote). – Erethism