Stackoverflow due to long RDD Lineage
Asked Answered
B

1

18

I have thousands of small files in HDFS. Need to process a slightly smaller subset of files (which is again in thousands), fileList contains list of filepaths which need to be processed.

// fileList == list of filepaths in HDFS

var masterRDD: org.apache.spark.rdd.RDD[(String, String)] = sparkContext.emptyRDD

for (i <- 0 to fileList.size() - 1) {

val filePath = fileStatus.get(i)
val fileRDD = sparkContext.textFile(filePath)
val sampleRDD = fileRDD.filter(line => line.startsWith("#####")).map(line => (filePath, line)) 

masterRDD = masterRDD.union(sampleRDD)

}

masterRDD.first()

//Once out of loop, performing any action results in stackoverflow error due to long lineage of RDD

Exception in thread "main" java.lang.StackOverflowError
    at scala.runtime.AbstractFunction1.<init>(AbstractFunction1.scala:12)
    at org.apache.spark.rdd.UnionRDD$$anonfun$1.<init>(UnionRDD.scala:66)
    at org.apache.spark.rdd.UnionRDD.getPartitions(UnionRDD.scala:66)
    at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:239)
    at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:237)
    at scala.Option.getOrElse(Option.scala:120)
    at org.apache.spark.rdd.RDD.partitions(RDD.scala:237)
    at org.apache.spark.rdd.UnionRDD$$anonfun$1.apply(UnionRDD.scala:66)
    at org.apache.spark.rdd.UnionRDD$$anonfun$1.apply(UnionRDD.scala:66)
    at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
    at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
    at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
    at scala.collection.mutable.WrappedArray.foreach(WrappedArray.scala:34)
    at scala.collection.TraversableLike$class.map(TraversableLike.scala:244)
    at scala.collection.AbstractTraversable.map(Traversable.scala:105)
    at org.apache.spark.rdd.UnionRDD.getPartitions(UnionRDD.scala:66)
    at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:239)
    at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:237)
    at scala.Option.getOrElse(Option.scala:120)
    at org.apache.spark.rdd.RDD.partitions(RDD.scala:237)
    at org.apache.spark.rdd.UnionRDD$$anonfun$1.apply(UnionRDD.scala:66)
    at org.apache.spark.rdd.UnionRDD$$anonfun$1.apply(UnionRDD.scala:66)
    at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
    at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
    at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
    at scala.collection.mutable.WrappedArray.foreach(WrappedArray.scala:34)
    at scala.collection.TraversableLike$class.map(TraversableLike.scala:244)
    at scala.collection.AbstractTraversable.map(Traversable.scala:105)
    at org.apache.spark.rdd.UnionRDD.getPartitions(UnionRDD.scala:66)
    at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:239)
    at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:237)
    at scala.Option.getOrElse(Option.scala:120)
    at org.apache.spark.rdd.RDD.partitions(RDD.scala:237)
    at org.apache.spark.rdd.UnionRDD$$anonfun$1.apply(UnionRDD.scala:66)
    at org.apache.spark.rdd.UnionRDD$$anonfun$1.apply(UnionRDD.scala:66)
    =====================================================================
    =====================================================================
    at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
Burra answered 25/12, 2015 at 9:49 Comment(0)
R
34

In general you can use checkpoints to break long lineages. Some more or less similar to this should work:

import org.apache.spark.rdd.RDD
import scala.reflect.ClassTag

val checkpointInterval: Int = ???

def loadAndFilter(path: String) = sc.textFile(path)
  .filter(_.startsWith("#####"))
  .map((path, _))

def mergeWithLocalCheckpoint[T: ClassTag](interval: Int)
  (acc: RDD[T], xi: (RDD[T], Int)) = {
    if(xi._2 % interval == 0 & xi._2 > 0) xi._1.union(acc).localCheckpoint
    else xi._1.union(acc)
  }

val zero: RDD[(String, String)] = sc.emptyRDD[(String, String)]
fileList.map(loadAndFilter).zipWithIndex
  .foldLeft(zero)(mergeWithLocalCheckpoint(checkpointInterval))

In this particular situation a much simpler solution should be to use SparkContext.union method:

val masterRDD = sc.union(
  fileList.map(path => sc.textFile(path)
    .filter(_.startsWith("#####"))
    .map((path, _))) 
)

A difference between these methods should be obvious when you take a look at the DAG generated by loop / reduce:

enter image description here

and a single union:

enter image description here

Of course if files are small you can combine wholeTextFiles with flatMap and read all files at once:

sc.wholeTextFiles(fileList.mkString(","))
  .flatMap{case (path, text) =>  
    text.split("\n").filter(_.startsWith("#####")).map((path, _))}
Ruscio answered 25/12, 2015 at 10:59 Comment(1)
Normally, after how many unions should you checkpoint? I am performing iterative unions between an one-row DF and a big DF. (PySpark 2.3.0)Headdress

© 2022 - 2024 — McMap. All rights reserved.