This code snippet will allocate 2Gb every time it reads the letter 'u' from stdin, and will initialize all the allocated chars once it reads 'a'.
#include <iostream>
#include <stdlib.h>
#include <stdio.h>
#include <vector>
#define bytes 2147483648
using namespace std;
int main()
{
char input [1];
vector<char *> activate;
while(input[0] != 'q')
{
gets (input);
if(input[0] == 'u')
{
char *m = (char*)malloc(bytes);
if(m == NULL) cout << "cant allocate mem" << endl;
else cout << "ok" << endl;
activate.push_back(m);
}
else if(input[0] == 'a')
{
for(int x = 0; x < activate.size(); x++)
{
char *m;
m = activate[x];
for(unsigned x = 0; x < bytes; x++)
{
m[x] = 'a';
}
}
}
}
return 0;
}
I am running this code on a linux virtual machine that has 3Gb of ram. While monitoring the system resource usage using the htop tool, I have realized that the malloc operation is not reflected on the resources.
For example when I input 'u' only once(i.e. allocate 2GB of heap memory), I don't see the memory usage increasing by 2GB in htop. It is only when I input 'a'(i.e. initialize), I see the memory usage increasing.
As a consequence, I am able to "malloc" more heap memory than there exists. For example, I can malloc 6GB(which is more than my ram and swap memory) and malloc would allow it(i.e. NULL is not returned by malloc). But when I try to initialize the allocated memory, I can see the memory and swap memory filling up till the process is killed.
-My questions:
1.Is this a kernel bug?
2.Can someone explain to me why this behavior is allowed?
gets()
causes buffer overflow. The solution is, well, throw it away. – Seedlinginput[0]
is notq
at start ofmain
, you are just lucky. Compile withg++ -Wall
. – Delivery