Dashed line in OpenGL3?
Asked Answered
C

1

15

I'm currently porting an old OpenGL 1.1 application which makes use of wireframe models to OpenGL 3.0.

In 1.1 following code is used to create a dashed line:

glPushAttrib(GL_ENABLE_BIT); 
glLineStipple(1, 0x0F0F);
glEnable(GL_LINE_STIPPLE);

Here as usual the parameters are pushed to the stack in order to influence all following drawing operations.

My question: how is this done in OpenGL3 where this stack is no longer used? How can I set up my lines to be dashed (probably before handing the coordinates over to glBufferData()?

Charie answered 22/10, 2018 at 11:51 Comment(2)
I think it can be done with a fragment shader, but I'm not exactly sure quite how. I think you would set an attribute per-vertex which contains the length of the line up to that point, then the shader could look at the the interpolated length and dot or not.Melleta
I tried to achieve dashed polylines by mapping the vertices in screen space to a u coordinate: shadertoy.com/view/Dtt3z2, this is quite a naive approach I guess, however, it looks nice enough to me and doesn't require you to preprocess the geometry.Chagrin
T
35

For separate line segments, this is not very complicated at all. For example drawing the GL_LINES primitives.
The trick is to know the start of the line segment in the fragment shader. This is quite simple by using the flat interpolation qualifier.

The vertex shader has to pass the normalized device coordinate to the fragment shader. Once with default interpolation and once with no (flat) interpolation. This causes that in the fragment shade, the first input parameter contains the NDC coordinate of the actual position on the line and the later the NDC coordinate of the start of the line.

#version 330

layout (location = 0) in vec3 inPos;

flat out vec3 startPos;
out vec3 vertPos;

uniform mat4 u_mvp;

void main()
{
    vec4 pos    = u_mvp * vec4(inPos, 1.0);
    gl_Position = pos;
    vertPos     = pos.xyz / pos.w;
    startPos    = vertPos;
}

Additionally to the varying inputs, the fragment shader has uniform variables. u_resolution contains the width and the height of the viewport. u_dashSize contains the length of the line and u_gapSize the length of a gap in pixel.

So the length of the line from the start to the actual fragment can be calculated:

vec2  dir  = (vertPos.xy-startPos.xy) * u_resolution/2.0;
float dist = length(dir);

And fragments on the gap can be discarded, by the discard command.

if (fract(dist / (u_dashSize + u_gapSize)) > u_dashSize/(u_dashSize + u_gapSize))
    discard; 

Fragment shader:

#version 330

flat in vec3 startPos;
in vec3 vertPos;

out vec4 fragColor;

uniform vec2  u_resolution;
uniform float u_dashSize;
uniform float u_gapSize;

void main()
{
    vec2  dir  = (vertPos.xy-startPos.xy) * u_resolution/2.0;
    float dist = length(dir);

    if (fract(dist / (u_dashSize + u_gapSize)) > u_dashSize/(u_dashSize + u_gapSize))
        discard; 
    fragColor = vec4(1.0);
}

For the following simple demo program I've used the GLFW API for creating a window, GLEW for loading OpenGL and GLM -OpenGL Mathematics for the math. I don't provide the code for the function CreateProgram, which just creates a program object, from the vertex shader and fragment shader source code:

#include <GL/glew.h>
#include <GL/gl.h>

#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>

#include <GLFW/glfw3.h>

#include <vector>

#define _USE_MATH_DEFINES
#include <math.h>

int main(void)
{
    if (glfwInit() == GLFW_FALSE)
        return 0;
    GLFWwindow *window = glfwCreateWindow(400, 300, "OGL window", nullptr, nullptr);
    if (window == nullptr)
        return 0;
    glfwMakeContextCurrent(window);
    glewExperimental = true;
    if (glewInit() != GLEW_OK)
        return 0;

    GLuint program = CreateProgram(vertShader, fragShader);
    GLint loc_mvp  = glGetUniformLocation(program, "u_mvp");
    GLint loc_res  = glGetUniformLocation(program, "u_resolution");
    GLint loc_dash = glGetUniformLocation(program, "u_dashSize");
    GLint loc_gap  = glGetUniformLocation(program, "u_gapSize");

    glUseProgram(program);
    glUniform1f(loc_dash, 10.0f);
    glUniform1f(loc_gap, 10.0f);

    std::vector<float> varray{
        -1, -1, -1,   1, -1, -1,   1, 1, -1,   -1, 1, -1,
        -1, -1,  1,   1, -1,  1,   1, 1,  1,   -1, 1,  1
    };
    std::vector<unsigned int> iarray{
        0, 1, 1, 2, 2, 3, 3, 0, 
        4, 5, 5, 6, 6, 7, 7, 4,
        0, 4, 1, 5, 2, 6, 3, 7
    };

    GLuint bo[2], vao;
    glGenBuffers(2, bo);
    glGenVertexArrays(1, &vao);
    glBindVertexArray(vao);
    glEnableVertexAttribArray(0); 
    glBindBuffer(GL_ARRAY_BUFFER, bo[0] );
    glBufferData(GL_ARRAY_BUFFER, varray.size()*sizeof(*varray.data()), varray.data(), GL_STATIC_DRAW);
    glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, 0); 
    glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, bo[1]);
    glBufferData(GL_ELEMENT_ARRAY_BUFFER, iarray.size()*sizeof(*iarray.data()), iarray.data(), GL_STATIC_DRAW);

    glClearColor(0.0f, 0.0f, 0.0f, 0.0f);

    glm::mat4 view = glm::lookAt(glm::vec3(0.0f, 0.0f, 5.0f), glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(0.0f, 1.0f, 0.0f));
    glm::mat4 project;
    int vpSize[2]{0, 0};
    while (!glfwWindowShouldClose(window))
    {
        int w, h;
        glfwGetFramebufferSize(window, &w, &h);
        if (w != vpSize[0] ||  h != vpSize[1])
        {
            vpSize[0] = w; vpSize[1] = h;
            glViewport(0, 0, vpSize[0], vpSize[1]);
            project = glm::perspective(glm::radians(90.0f), (float)w/(float)h, 0.1f, 10.0f);
            glUniform2f(loc_res, (float)w, (float)h);
        }

        static float angle = 1.0f;
        glm::mat4 modelview( 1.0f );
        modelview = glm::translate(modelview, glm::vec3(0.0f, 0.0f, -3.0f) );
        modelview = glm::rotate(modelview, glm::radians(angle), glm::vec3(1.0f, 0.0f, 0.0f));
        modelview = glm::rotate(modelview, glm::radians(angle*0.5f), glm::vec3(0.0f, 1.0f, 0.0f));
        angle += 0.5f;
        glm::mat4 mvp = project * modelview;

        glUniformMatrix4fv(loc_mvp, 1, GL_FALSE, glm::value_ptr(mvp));
        glClear(GL_COLOR_BUFFER_BIT);
        glDrawElements(GL_LINES, (GLsizei)iarray.size(), GL_UNSIGNED_INT, nullptr);

        glfwSwapBuffers(window);
        glfwPollEvents();
    }
    glfwTerminate();

    return 0;
}

Things get a bit more complicated, if the goal is to draw a dashed line along a polygon. For example drawing a GL_LINE_STRIP primitive.

The length of the line cannot be calculated in the shader program, without knowing all the primitives of the line. Even if all the primitives would be known (e.g. SSBO), then the calculation would have to be done in a loop.
I decided to add an additional attribute to the shader program, which contains the "distance" from the start of the line to the vertex coordinate. By "distance" is meant the length of the projected polygon on to the viewport.

This causes that the vertex shader and fragment shader is even simpler:

Vertex shader:

#version 330

layout (location = 0) in vec3 inPos;
layout (location = 1) in float inDist;

out float dist;

uniform mat4 u_mvp;

void main()
{
    dist        = inDist;
    gl_Position = u_mvp * vec4(inPos, 1.0);
}

Fragment shader:

#version 330

in float dist;

out vec4 fragColor;

uniform vec2  u_resolution;
uniform float u_dashSize;
uniform float u_gapSize;

void main()
{
    if (fract(dist / (u_dashSize + u_gapSize)) > u_dashSize/(u_dashSize + u_gapSize))
        discard; 
    fragColor = vec4(1.0);
}

In the demo program the inDist attribute is calculated on the CPU. Each vertex coordinate is transformed by the model, view, projection matrix. Finally it is transformed from normalized device space to window space. The XY distance between adjacent coordinates of the line strip is calculated and the lengths are summed along the line strip and assigned to the corresponding attribute value:

int w = [...], h = [...];               // window widht and height
glm::mat4 mpv = [...];                  // model view projection matrix
std::vector<glm::vec3> varray{ [...] }; // array of vertex 

std::vector<float> darray(varray.size(), 0.0f); // distance attribute - has to be computed

glm::mat4 wndmat = glm::scale(glm::mat4(1.0f), glm::vec3((float)w/2.0f, (float)h/2.0f, 1.0f));
wndmat = glm::translate(wndmat, glm::vec3(1.0f, 1.0f, 0.0f));

glm::vec2 vpPt(0.0f, 0.0f);
float dist = 0.0f;
for (size_t i=0; i < varray.size(); ++i)
{
    darray[i] = dist;
    glm::vec4 clip = mvp * glm::vec4(varray[i], 1.0f);
    glm::vec4 ndc  = clip / clip.w;
    glm::vec4 vpC  = wndmat * ndc;
    float len = i==0 ? 0.0f :  glm::length(vpPt - glm::vec2(vpC));
    vpPt = glm::vec2(vpC);
    dist += len;
}

Demo program:

int main(void)
{
    if (glfwInit() == GLFW_FALSE)
        return 0;
    GLFWwindow *window = glfwCreateWindow(800, 600, "OGL window", nullptr, nullptr);
    if (window == nullptr)
        return 0;
    glfwMakeContextCurrent(window);
    glewExperimental = true;
    if (glewInit() != GLEW_OK)
        return 0;

    GLuint program = CreateProgram(vertShader, fragShader);
    GLint loc_mvp  = glGetUniformLocation(program, "u_mvp");
    GLint loc_res  = glGetUniformLocation(program, "u_resolution");
    GLint loc_dash = glGetUniformLocation(program, "u_dashSize");
    GLint loc_gap  = glGetUniformLocation(program, "u_gapSize");

    glUseProgram(program);
    glUniform1f(loc_dash, 10.0f);
    glUniform1f(loc_gap, 10.0f);

    std::vector<glm::vec3> varray;
    for (size_t u=0; u <= 360; ++u)
    {
        double a = u*M_PI/180.0;
        double c = cos(a), s = sin(a);
        varray.emplace_back(glm::vec3((float)c, (float)s, 0.0f));
    }
    std::vector<float> darray(varray.size(), 0.0f);

    GLuint bo[2], vao;
    glGenBuffers(2, bo);
    glGenVertexArrays(1, &vao);
    glBindVertexArray(vao);
    glEnableVertexAttribArray(0); 
    glEnableVertexAttribArray(1); 
    glBindBuffer(GL_ARRAY_BUFFER, bo[0] );
    glBufferData(GL_ARRAY_BUFFER, varray.size()*sizeof(*varray.data()), varray.data(), GL_STATIC_DRAW);
    glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, 0); 
    glBindBuffer(GL_ARRAY_BUFFER, bo[1] );
    glBufferData(GL_ARRAY_BUFFER, darray.size()*sizeof(*darray.data()), darray.data(), GL_STATIC_DRAW);
    glVertexAttribPointer(1, 1, GL_FLOAT, GL_FALSE, 0, 0); 

    glClearColor(0.0f, 0.0f, 0.0f, 0.0f);

    glm::mat4 view = glm::lookAt(glm::vec3(0.0f, 0.0f, 5.0f), glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(0.0f, 1.0f, 0.0f));
    glm::mat4 project, wndmat;
    int vpSize[2]{0, 0};
    while (!glfwWindowShouldClose(window))
    {
        int w, h;
        glfwGetFramebufferSize(window, &w, &h);
        if (w != vpSize[0] ||  h != vpSize[1])
        {
            vpSize[0] = w; vpSize[1] = h;
            glViewport(0, 0, vpSize[0], vpSize[1]);
            project = glm::perspective(glm::radians(90.0f), (float)w/(float)h, 0.1f, 10.0f);
            glUniform2f(loc_res, (float)w, (float)h);
            wndmat = glm::scale(glm::mat4(1.0f), glm::vec3((float)w/2.0f, (float)h/2.0f, 1.0f));
            wndmat = glm::translate(wndmat, glm::vec3(1.0f, 1.0f, 0.0f));
        }

        static float angle = 1.0f;
        glm::mat4 modelview( 1.0f );
        modelview = glm::translate(modelview, glm::vec3(0.0f, 0.0f, -2.0f) );
        modelview = glm::rotate(modelview, glm::radians(angle), glm::vec3(1.0f, 0.0f, 0.0f));
        modelview = glm::rotate(modelview, glm::radians(angle*0.5f), glm::vec3(0.0f, 1.0f, 0.0f));
        angle += 0.5f;
        glm::mat4 mvp = project * modelview;

        glm::vec2 vpPt(0.0f, 0.0f);
        float dist = 0.0f;
        for (size_t i=0; i < varray.size(); ++i)
        {
            darray[i] = dist;
            glm::vec4 clip = mvp * glm::vec4(varray[i], 1.0f);
            glm::vec4 ndc  = clip / clip.w;
            glm::vec4 vpC  = wndmat * ndc;
            float len = i==0 ? 0.0f :  glm::length(vpPt - glm::vec2(vpC));
            vpPt = glm::vec2(vpC);
            dist += len;
        }
        glBufferSubData(GL_ARRAY_BUFFER, 0, darray.size()*sizeof(*darray.data()), darray.data());

        glUniformMatrix4fv(loc_mvp, 1, GL_FALSE, glm::value_ptr(mvp));
        glClear(GL_COLOR_BUFFER_BIT);
        glDrawArrays(GL_LINE_STRIP, 0, (GLsizei)varray.size());

        glfwSwapBuffers(window);
        glfwPollEvents();
    }
    glfwTerminate();

    return 0;
}

See also
glLineStipple deprecated in OpenGL 3.1
OpenGL ES - Dashed Lines

Touchback answered 5/2, 2019 at 21:24 Comment(1)
Very nice answer. I see you give us two set of shaders, one for GL_LINES and the other for GL_LINE_STRIP.Capture

© 2022 - 2024 — McMap. All rights reserved.