C++ is probably the most popular language for static metaprogramming and Java doesn't support it.
Are there any other languages besides C++ that support generative programming (programs that create programs)?
C++ is probably the most popular language for static metaprogramming and Java doesn't support it.
Are there any other languages besides C++ that support generative programming (programs that create programs)?
The alternative to template style meta-programming is Macro-style that you see in various Lisp implementations. I would suggest downloading Paul Graham's On Lisp and also taking a look at Clojure if you're interested in a Lisp with macros that runs on the JVM.
Macros in Lisp are much more powerful than C/C++ style and constitute a language in their own right -- they are meant for meta-programming.
let me list a few important details about how metaprogramming works in lisp (or scheme, or slate, or pick your favorite "dynamic" language):
random examples of what you can implement as a user library using lisp metaprogramming (these are actual examples of common lisp libraries):
Template metaprogramming is essentially abuse of the template mechanism. What I mean is that you get basically what you'd expect from a feature that was an unplanned side-effect --- it's a mess, and (although tools are getting better) a real pain in the ass because the language doesn't support you in doing it (I should note that my experience with state-of-the-art on this is out of date, since I essentially gave up on the approach. I've not heard of any great strides made, though)
Messing around with this in about '98 was what drove me to look for better solutions. I could write useful systems that relied on it, but they were hellish. Poking around eventually led me to Common Lisp. Sure, the template mechanism is Turing complete, but then again so is intercal.
Common Lisp does metaprogramming `right'. You have the full power of the language available while you do it, no special syntax, and because the language is very dynamic you can do more with it.
There are other options of course. No other language I've used does metaprogramming better than Lisp does, which is why I use it for research code. There are lots of reasons you might want to try something else though, but it's all going to be tradeoffs. You can look at Haskell/ML/OCaml etc. Lots of functional languages have something approaching the power of Lisp macros. You can find some .NET targeted stuff, but they're all pretty marginal (in terms of user base etc.). None of the big players in industrially used languages have anything like this, really.
Nemerle and Boo are my personal favorites for such things. Nemerle has a very elegant macro syntax, despite its poor documentation. Boo's documentation is excellent but its macros are a little less elegant. Both work incredibly well, however.
Both target .NET, so they can easily interoperate with C# and other .NET languages -- even Java binaries, if you use IKVM.
Edit: To clarify, I mean macros in the Lisp sense of the word, not C's preprocessor macros. These allow definition of new syntax and heavy metaprogramming at compiletime. For instance, Nemerle ships with macros that will validate your SQL queries against your SQL server at compiletime.
Nim is a relatively new programming language that has extensive support for static meta-programming and produces efficient (C++ like) compiled code.
It supports compile-time function evaluation, lisp-like AST code transformations through macros, compile-time reflection, generic types that can be parametrized with arbitrary values, and term rewriting that can be used to create user-defined high-level type-aware peephole optimizations. It's even possible to execute external programs during the compilation process that can influence the code generation. As an example, consider talking to a locally running database server in order to verify that the ORM definition in your code (supplied through some DSL) matches the schema of the database.
The "D" programming language is C++-like but has much better metaprogramming support. Here's an example of a ray-tracer written using only compile-time metaprogramming:
Additionally, there is a gcc branch called "Concept GCC" that supports metaprogramming contructs that C++ doesn't (at least not yet).
Common Lisp supports programs that write programs in several different ways.
1) Program data and program "abstract syntax tree" are uniform (S-expressions!)
2) defmacro
3) Reader macros.
4) MOP
Of these, the real mind-blower is MOP. Read "The Art of the Metaobject Protocol." It will change things for you, I promise!
Lots of work in Haskell: Domain Specific Languages (DSL's), Executable Specifications, Program Transformation, Partial Application, Staged Computation. Few links to get you started:
'metaprogramming' is really a bad name for this specific feature, at least when you're discussing more than one language, since this feature is only needed for a narrow slice of languages that are:
take out any one of these, and 'static metaprogramming', just doesn't make sense. therefore, i would be surprised if any remotely mainstream language had something like that, as understood on C++.
of course, dynamic languages, and several functional languages support totally different concepts that could also be called metaprogramming.
The ML family of languages were designed specifically for this purpose. One of OCaml's most famous success stories is the FFTW library for high-performance FFTs that is C code generated almost entirely by an OCaml program.
Cheers, Jon Harrop.
Most people try to find a language that has "ultimate reflection" for self-inspection and something like "eval" for reifying new code. Such languages are hard to find (LISP being a prime counterexample) and they certainly aren't mainstream.
But another approach is to use a set of tools that can inspect, generate, and manipulate program code. Jackpot is such a tool focused on Java. http://jackpot.netbeans.org/
Our DMS software reengineering toolkit is such a tool, that works on C, C++, C#, Java, COBOL, PHP, Javascript, Ada, Verilog, VHDL and variety of other languages. (It uses production quality front ends to enable it to read all these langauges). Better, it can do this with multiple languages at the same instant. See http://www.semdesigns.com/Products/DMS/DMSToolkit.html
DMS succeeds because it provides a regular method and support infrastructure for complete access to the program structure as ASTs, and in most cases additional data such a symbol tables, type information, control and data flow analysis, all necessary to do sophisticated program manipulation.
Lisp supports a form of "metaprogramming", although not in the same sense as C++ template metaprogramming. Also, your term "static" could mean different things in this context, but Lisp also supports static typing, if that's what you mean.
The Meta-Language (ML), of course: http://cs.anu.edu.au/student/comp8033/ml.html
It does not matter what language you are using -- any of them is able to do Heterogeneous Generative Metaprogramming. Take any dynamic language such as Python or Clojure, or Haskell if you are a type-fan, and write models in this host language that are able to compile themself into some mainstream language you want or forced to use by your team/employer.
I found object graphs a good model for internal model representation. This graph can mix attributes and ordered subgraphs in a single node, which is native to attribute grammar and AST. So, object graph interpretation can be an effective layer between your host and target languages and can act itself as some sort of no-syntax language defined over data structures.
The closest model is an AST: describe AST trees in Python (host language) targets to C++ syntax (target language):
# from metaL import *
class Object:
def __init__(self, V):
self.val = V
self.slot = {}
self.nest = []
class Module(Object):
def cc(self):
c = '// \ %s\n' % self.head(test=True)
for i in self.nest:
c += i.cc()
c += '// / %s\n' % self.head(test=True)
return c
hello = Module('hello')
# <module:hello> #a04475a2
class Include(Object):
def cc(self):
return '#include <%s.h>\n' % self.val
stdlib = Include('stdlib')
hello // stdlib
# <module:hello> #b6efb657
# 0: <include:stdlib> #f1af3e21
class Fn(Object):
def cc(self):
return '\nvoid %s() {\n}\n\n' % self.val
main = Fn('main')
hello // main
print(hello.cc())
// \ <module:hello>
#include <stdlib.h>
void main() {
}
// / <module:hello>
But you are not limited with the level of abstraction of constructed object graph: you not only can freely add your own types but object graph can interpret itself, can thus can modify itself the same way as lists in a Lisp can do.
© 2022 - 2024 — McMap. All rights reserved.