String representation of an Enum
Asked Answered
W

37

959

I have the following enumeration:

public enum AuthenticationMethod
{
    FORMS = 1,
    WINDOWSAUTHENTICATION = 2,
    SINGLESIGNON = 3
}

The problem however is that I need the word "FORMS" when I ask for AuthenticationMethod.FORMS and not the id 1.

I have found the following solution for this problem (link):

First I need to create a custom attribute called "StringValue":

public class StringValue : System.Attribute
{
    private readonly string _value;

    public StringValue(string value)
    {
        _value = value;
    }

    public string Value
    {
        get { return _value; }
    }

}

Then I can add this attribute to my enumeration:

public enum AuthenticationMethod
{
    [StringValue("FORMS")]
    FORMS = 1,
    [StringValue("WINDOWS")]
    WINDOWSAUTHENTICATION = 2,
    [StringValue("SSO")]
    SINGLESIGNON = 3
}

And of course I need something to retrieve that StringValue:

public static class StringEnum
{
    public static string GetStringValue(Enum value)
    {
        string output = null;
        Type type = value.GetType();

        //Check first in our cached results...

        //Look for our 'StringValueAttribute' 

        //in the field's custom attributes

        FieldInfo fi = type.GetField(value.ToString());
        StringValue[] attrs =
           fi.GetCustomAttributes(typeof(StringValue),
                                   false) as StringValue[];
        if (attrs.Length > 0)
        {
            output = attrs[0].Value;
        }

        return output;
    }
}

Good now I've got the tools to get a string value for an enumeration. I can then use it like this:

string valueOfAuthenticationMethod = StringEnum.GetStringValue(AuthenticationMethod.FORMS);

Okay now all of these work like a charm but I find it a whole lot of work. I was wondering if there is a better solution for this.

I also tried something with a dictionary and static properties but that wasn't better either.

Wrong answered 8/1, 2009 at 14:15 Comment(7)
While you may find this long winded, it's actually a pretty flexible way to go for other things. As one of my colleagues pointed out, this could be used in many cases to replace Enum Helpers that map database codes to enum values etc...Subreption
It is an "Enumeration", not an "Enumerator".Latinalatinate
MSDN reccoments suffix attribute classes with "Attribute" suffix. So "class StringValueAttribute" ;)Octave
I agree with @Subreption this is actually quite flexible. Also, you could make this an extension method just by adding this in front of the Enum in your static method. Then you can do AuthenticationMethod.Forms.GetStringValue();Magnetron
This approach uses reflection to read the attribute values and it is very slow if you have to call GetStringValue() many times in my experience. The type-safe-enum pattern is faster.Odessaodetta
If you do go down the attribute route, rather than rolling your own, you could use System.ComponentModel.DescriptionAttribute.Enshrine
Why are you going through all that trouble when you could just simply call .ToString() on the enum to get the string "FORMS"?Impatience
R
889

Try type-safe-enum pattern.

public sealed class AuthenticationMethod {

    private readonly String name;
    private readonly int value;

    public static readonly AuthenticationMethod FORMS = new AuthenticationMethod (1, "FORMS");
    public static readonly AuthenticationMethod WINDOWSAUTHENTICATION = new AuthenticationMethod (2, "WINDOWS");
    public static readonly AuthenticationMethod SINGLESIGNON = new AuthenticationMethod (3, "SSN");        

    private AuthenticationMethod(int value, String name){
        this.name = name;
        this.value = value;
    }

    public override String ToString(){
        return name;
    }

}

Update Explicit (or implicit) type conversion can be done by

  • adding static field with mapping

    private static readonly Dictionary<string, AuthenticationMethod> instance = new Dictionary<string,AuthenticationMethod>();
    
    • n.b. In order that the initialisation of the the "enum member" fields doesn't throw a NullReferenceException when calling the instance constructor, be sure to put the Dictionary field before the "enum member" fields in your class. This is because static field initialisers are called in declaration order, and before the static constructor, creating the weird and necessary but confusing situation that the instance constructor can be called before all static fields have been initialised, and before the static constructor is called.
  • filling this mapping in instance constructor

    instance[name] = this;
    
  • and adding user-defined type conversion operator

    public static explicit operator AuthenticationMethod(string str)
    {
        AuthenticationMethod result;
        if (instance.TryGetValue(str, out result))
            return result;
        else
            throw new InvalidCastException();
    }
    
Ritchie answered 8/1, 2009 at 14:29 Comment(26)
It looks like an enum but it isn't an enum. I can imagine that causing some interesting problems if people start trying to compare AuthenticationMethods. You probably need to overload various equality operators too.Prepay
@Ant: I don't have to. Since we have only one instance of each AuthenticationMethod the reference equality inherited from Object works fine.Racketeer
+1 I've used this solution before. Like a powerful enum. I imagine you cannot use this as values in a switch statement though can you? Also, the only time you would have to worry about the equality problem is if this was declared as a struct rather than a class.Dominga
@InvisibleBacon: Right, switch isn't option in this case. However sometimes you can replace switch with polymorphism. See: sourcemaking.com/refactoring/…Racketeer
This is weird, and seems dangerous to me... What prevents this from happening: AuthenticationMethod a = new AuthenticationMethod(); var b = a.FORMS.SINGLESIGNON; since a.FORMS is itself an instance of AuthenticationMethod?Stereometry
@tyriker: Compiler does. The constructor is private so you cannot create new instance. Also static members are not accessible through instance.Racketeer
@Jakub Very interesting. I had to play with it to figure out how to use it, and realize its benefits. It's a public, non-static class, but can't be instantiated and you can only access its static members. Basically, it behaves like an enum. But the best part...the static members are typed of the class and not a generic string or int. It's a ... [wait for it] ... type safe enum! Thanks for helping me understand.Stereometry
I see a problem when you want to mix this with external values (e.g. DB). You want to cast that to a strongly typed one but you can't. It's also not possible to write a loop that matches a string to a correct strongly-typed value. All you can do is series of ugly if else statements.Ahithophel
@ssg: Sorry I don't see your point. You can implement explicit / implicit operators on AuthenticationMethod class if you really need them.Racketeer
@Jakub: Say you have 20 names and you use the same names in DB. You read the record and you want to cast it to "enum" in the code. You need to map each and every string to the strongly typed equivalent by check with series of ifs. How does operator overloading help here?Ahithophel
@ssg: I've updated sample. So now if you can write var stronglyTypeInstance = (AuthenticationMethod)"FORMS"; I am not sure about conversion operators. Maybe static Parse method would work better. If you want it you can get it.Racketeer
For further details on how to implement this pattern, take a look at javacamp.org/designPattern/enum.html I know it's not a C# implementation, but still understandable.Menke
Love this solution - the only major downside I've hit with it is that it doesn't work in a switch statement - that is, I can use a normal enum or a list of const's in a switch, but not these.Frequentation
Er... This is just a degenerate disjoint union or discriminated union or tagged union en.wikipedia.org/wiki/Tagged_union . It's been around since the 1960's guys. No need to invent a flashy pattern name for something that has been around for decades and already has a perfectly suited name (which comes from math).Haw
@MauricioScheffer: I can argue about degeneration but you are right. All this has happened before and all this will happen again.Racketeer
one change I'd make to this is to not store the string values as instance fields, but as static consts. Why waste the storage? Just put a switch case statement in the ToString(); then the string values are only stored in the type definition and not in each instance of the "enum." (the type). You could even just hard-code them in the case statements of the switch. Also, this is a prime example of a situation wheere you should use a struct instead of a class. It is, (or should be) basically immutable.Ious
@CharlesBretana: Are you talking about private static readonly Dictionary<string, AuthenticationMethod> instance variable? And please elaborate on the struct. I'm not sure if you can make it this ingenious...Cubby
What I like about this is that you can also define extra methods on the enum, to give things like grouping behaviour (like the standard example of a DayOfTheWeek enumeration with a method IsWeekend that returns true if the instance being referenced is Saturday or Sunday).Chromite
Those concerned with confusing later coders... One thing you can do is use the word "Enum" in the class name to entice user programmers to view the source code, if available.Mediatory
This is a nice pattern but I have issues dealing with serialization... To implement ISerializable, your class must include a special constructor, which would break the sealed/singleton nature of the code. I'm also trying to use this TypeSafeEnum on a UserControl property - like this <uc:MyUC AuthMethod="FORMS" /> - so I had to implement a TypeConverter and that seems to be causing a slew of other problems - one of them being that the static constructor doesn't get ran before the TypeConverter attempts doing conversions. (Workaround: just store the prop as a string and cast when needed)Gogol
As the type-safe-enum values aren't compile time constant (as normal enum values and strings are) you cannot use them wherever compile time constant values are required. In my use case that were Attributes but I imagine some more. The switch is however no problem, as you can implement such kind of stuff in the type-safe-enum class thus promoting it to be a smart enum.Frustrate
@JakubŠturc On the off chance you'll respond to this: How would I go about enumerating this like an enum Enum.GetValues()? The only thing I can think of is reflection in a static Enumerate() function.Aalst
Love the pattern, and have used it before in many forms, but perhaps the one thing that keeps taking me back to Enums is that I cannot use this TypeSafeEnum as a default value for a parameter since it is not a compile-time constant. Any ideas on a way around this hiccup?Serrate
Works as long as the value doesn't need to be serialized.Wiedmann
@Serrate if you look at deadlydog's version, which makes the int a public enum instead, you can use that for defaults or in a switch statement.Disciplinant
I originally used your implementation, but I thought it was annoying to have to keep writing so much code manually so I built some T4 templates to help out with it. https://mcmap.net/q/53312/-string-representation-of-an-enum It provides ways to iterate over the values with Enum.Values. Might also assist with default values for parameters. @AalstDaly
I
236

Use method

Enum.GetName(Type MyEnumType,  object enumvariable)  

as in (Assume Shipper is a defined Enum)

Shipper x = Shipper.FederalExpress;
string s = Enum.GetName(typeof(Shipper), x);

There are a bunch of other static methods on the Enum class worth investigating too...

Ious answered 8/1, 2009 at 14:19 Comment(12)
Exactly. I did make a custom attribute for a string description, but that's because I want a user-friendly version (with spaces and other special characters) that can be easily bound to a ComboBox or such.Bodleian
Enum.GetName reflects the field names in the enum - same as the .ToString(). If performance is an issue it can be a problem. I wouldn't worry about it unless you're converting loads of enums though.Transcendence
Another option to consider, if you need an enum with extra functiuonality, is to "roll yr own" using a struct... you add static readonly named properties to represent the enum values that are initialized to constructors that generate individual instances of the struct...Ious
then you can add whatever other struct members you wish, to implement whatever functionality you want this "enum" to have ...Ious
The issue here is that GetName is not localizable. That isn't always a concern, but it is something to be aware of.Homerhomere
@Charles: Yup, I've done that for enumerated values which require more advanced parsing logic.Latinalatinate
@Ed, yes it's an extremely useful technique that not a lot of people are familar withIous
why not Shipper.FederalExpress.ToString(). I tried in C# 4.0 and the result was the same as Enum.GetNameElectrocardiogram
That only works if you explicitly have the specific member of the enum at compile time. If all you have is a variable that at run time might have any member of the enum assigned to it, you can't do that.Ious
@tyler, and, since it only works at compile time, if you know which member you're after, in that case, why not, instead of Shipper.FederalExpress.ToString(), just put "FederalExpress" ?Ious
@CharlesBretana, I don't get your point. I don't have to know the memeber I am after. Suppose that it is a variable named x (just as the one in you answer), doesn't x.toString() work? I didn't try because it's long time since I wrote the last line of C#. if it doesn't work, then I get your point.Electrocardiogram
@tyler, I'll have to actually do it now to be sure, but as I recollect, unless you override it (which you can't do for an enum) ToString() on a variable just returns the type name. That's one reason why you override ToString() on other declared types as a matter of habit, to ensure that the debugger displays something useful (instead of just the typename) when looking at contents of collections and such.Ious
S
81

You can reference the name rather than the value by using ToString()

Console.WriteLine("Auth method: {0}", AuthenticationMethod.Forms.ToString());

The documentation is here:

http://msdn.microsoft.com/en-us/library/16c1xs4z.aspx

...and if you name your enums in Pascal Case (as I do - such as ThisIsMyEnumValue = 1 etc.) then you could use a very simple regex to print the friendly form:

static string ToFriendlyCase(this string EnumString)
{
    return Regex.Replace(EnumString, "(?!^)([A-Z])", " $1");
}

which can easily be called from any string:

Console.WriteLine("ConvertMyCrazyPascalCaseSentenceToFriendlyCase".ToFriendlyCase());

Outputs:

Convert My Crazy Pascal Case Sentence To Friendly Case

That saves running all the way around the houses creating custom attributes and attaching them to your enums or using lookup tables to marry an enum value with a friendly string and best of all it's self managing and can be used on any Pascal Case string which is infinitely more reusable. Of course, it doesn't allow you to have a different friendly name than your enum which your solution does provide.

I do like your original solution though for more complex scenarios though. You could take your solution one step further and make your GetStringValue an extension method of your enum and then you wouldn't need to reference it like StringEnum.GetStringValue...

public static string GetStringValue(this AuthenticationMethod value)
{
  string output = null;
  Type type = value.GetType();
  FieldInfo fi = type.GetField(value.ToString());
  StringValue[] attrs = fi.GetCustomAttributes(typeof(StringValue), false) as StringValue[];
  if (attrs.Length > 0)
    output = attrs[0].Value;
  return output;
}

You could then access it easily straight from your enum instance:

Console.WriteLine(AuthenticationMethod.SSO.GetStringValue());
Subreption answered 8/1, 2009 at 14:16 Comment(5)
This doesn't help if the "friendly name" needs a space. Such as "Forms Authentication"Pasticcio
So make sure the enum is named with caps like FormsAuthentication and insert a space before any caps that aren't at the beginning. It's not rocket science to insert a space in a string...Subreption
The auto-spacing of Pascal Case names becomes problematic if they contain abbreviations that should be capitalised, XML or GPS for example.Huelva
@RichardEv, there's no perfect regex for this but here is one that should work a little better with abbreviations. "(?!^)([^A-Z])([A-Z])", "$1 $2". So HereIsATEST becomes Here Is ATEST.Gogol
Not elegent doing these little "hacks" which is what they are. I get what the OP is saying and I am trying to find a similar solution i.e. using the elegance of Enums but being able to readily access the associated message. Only solution I can think of is to apply some kind of mapping between the enum name and a string value but that doesn't get arround the issue of maintaining the string data (however makes it practical for scenarios where you need to have multi regions etc)Fuzzy
T
76

Unfortunately reflection to get attributes on enums is quite slow:

See this question: Anyone know a quick way to get to custom attributes on an enum value?

The .ToString() is quite slow on enums too.

You can write extension methods for enums though:

public static string GetName( this MyEnum input ) {
    switch ( input ) {
        case MyEnum.WINDOWSAUTHENTICATION:
            return "Windows";
        //and so on
    }
}

This isn't great, but will be quick and not require the reflection for attributes or field name.


C#6 Update

If you can use C#6 then the new nameof operator works for enums, so nameof(MyEnum.WINDOWSAUTHENTICATION) will be converted to "WINDOWSAUTHENTICATION" at compile time, making it the quickest way to get enum names.

Note that this will convert the explicit enum to an inlined constant, so it doesn't work for enums that you have in a variable. So:

nameof(AuthenticationMethod.FORMS) == "FORMS"

But...

var myMethod = AuthenticationMethod.FORMS;
nameof(myMethod) == "myMethod"
Transcendence answered 8/1, 2009 at 14:20 Comment(10)
You can fetch the attribute values once and put them in a Dictionary<MyEnum,string> to keep the declarative aspect.Freedom
Yeah that's what we ended up doing in an app with lots of enums when we found out that the reflection was the bottle-neck.Transcendence
Thanks Jon and Keith, I ended up using your Dictionary suggestion. Works great (and fast!).Satirist
@JonSkeet I know this is old. But how would one achieve this?Regelate
@user919426: Achieve want? Putting them in a dictionary? Just create a dictionary, ideally with a collection initializer... it's not clear what you're asking for.Freedom
Thanks for responding @JonSkeet Sorry, I meant to ask the actual implementation. How to "fetch once" without re-calling again. Will use your answer to figure the logic.Regelate
nameof() only works if you know the enum instance ahead of time. ie in var enumVal = MyEnum.Value; the value returned by nameof(enumVal) will be 'enumVal', not 'Value'. It's a compiler feature, not runtime.Animism
@Animism yes, although there's no instance involved - nameof(MyEnum.Value) will become "Value" at compile time, there's no instance of MyEnum.Transcendence
@Transcendence Not sure I follow - this question (and answer) is about getting the name of an instance of an enum. Someone could easily come here, read this answer, see mention of nameof() being 'the quickest way to get enum names' and use it thinking they'd get the desired results. I know your example doesn't show the instance, but maybe worth an edit to the answer to clarify.Animism
@Animism all the examples in the question seem to be getting the name of an explicit enum, for instance (from the question) StringEnum.GetStringValue(AuthenticationMethod.FORMS) - in that context nameof(AuthenticationMethod.FORMS) is quicker. I was quite explicit in the answer that this was strictly a compile time optimisation, but I will add clarification.Transcendence
F
61

I use an extension method:

public static class AttributesHelperExtension
    {
        public static string ToDescription(this Enum value)
        {
            var da = (DescriptionAttribute[])(value.GetType().GetField(value.ToString())).GetCustomAttributes(typeof(DescriptionAttribute), false);
            return da.Length > 0 ? da[0].Description : value.ToString();
        }
}

Now decorate the enum with:

public enum AuthenticationMethod
{
    [Description("FORMS")]
    FORMS = 1,
    [Description("WINDOWSAUTHENTICATION")]
    WINDOWSAUTHENTICATION = 2,
    [Description("SINGLESIGNON ")]
    SINGLESIGNON = 3
}

When you call

AuthenticationMethod.FORMS.ToDescription() you will get "FORMS".

Failing answered 11/2, 2012 at 0:15 Comment(3)
I had to add using System.ComponentModel; Also, this method only works if you want the String value to be the same as the Enum's name. OP wanted a different value.Transmarine
Don't you mean when you call AuthenticationMethod.FORMS.ToDescription()?Revolution
This solution works great and does allow the description to be different from the Enum variable name.Ebeneser
A
42

Just use the ToString() method

public enum any{Tomato=0,Melon,Watermelon}

To reference the string Tomato, just use

any.Tomato.ToString();
Alfreda answered 6/9, 2012 at 15:50 Comment(5)
Wow. That was easy. I know the OP wanted to add custom string descriptions, but this is what I needed. I should have known to try this, in retrospect, but I went down the Enum.GetName route.Rhaetia
@Brent Because most often you have the .ToString() value different than the user-friendly value you need.Nianiabi
@Brent - because this is different than the question being asked. The question being ask is how to you get this string from a variable that has been assigned an enumerated value. That is dynamic at run time. This is checking the definition of the type and set at run time.Childers
@Childers - the ToString() works on variables as well: any fruit = any.Tomato; string tomato = fruit.ToString();Theresiatheresina
@Theresiatheresina - please remember this was written in 09 -- C# was different then and ToString() on an instance of an enumeration did something different.Childers
A
31

Very simple solution to this with .Net 4.0 and above. No other code is needed.

public enum MyStatus
{
    Active = 1,
    Archived = 2
}

To get the string about just use:

MyStatus.Active.ToString("f");

or

MyStatus.Archived.ToString("f");`

The value will be "Active" or "Archived".

To see the different string formats (the "f" from above) when calling Enum.ToString see this Enumeration Format Strings page

Arnaud answered 22/9, 2015 at 20:46 Comment(0)
P
28

I use the Description attribute from the System.ComponentModel namespace. Simply decorate the enum and then use this code to retrieve it:

public static string GetDescription<T>(this object enumerationValue)
            where T : struct
        {
            Type type = enumerationValue.GetType();
            if (!type.IsEnum)
            {
                throw new ArgumentException("EnumerationValue must be of Enum type", "enumerationValue");
            }

            //Tries to find a DescriptionAttribute for a potential friendly name
            //for the enum
            MemberInfo[] memberInfo = type.GetMember(enumerationValue.ToString());
            if (memberInfo != null && memberInfo.Length > 0)
            {
                object[] attrs = memberInfo[0].GetCustomAttributes(typeof(DescriptionAttribute), false);

                if (attrs != null && attrs.Length > 0)
                {
                    //Pull out the description value
                    return ((DescriptionAttribute)attrs[0]).Description;
                }
            }
            //If we have no description attribute, just return the ToString of the enum
            return enumerationValue.ToString();

        }

As an example:

public enum Cycle : int
{        
   [Description("Daily Cycle")]
   Daily = 1,
   Weekly,
   Monthly
}

This code nicely caters for enums where you don't need a "Friendly name" and will return just the .ToString() of the enum.

Pasticcio answered 8/1, 2009 at 14:30 Comment(0)
T
28

I really like Jakub Šturc's answer, but it's shortcoming is that you cannot use it with a switch-case statement. Here's a slightly modified version of his answer that can be used with a switch statement:

public sealed class AuthenticationMethod
{
    #region This code never needs to change.
    private readonly string _name;
    public readonly Values Value;

    private AuthenticationMethod(Values value, String name){
        this._name = name;
        this.Value = value;
    }

    public override String ToString(){
        return _name;
    }
    #endregion

    public enum Values
    {
        Forms = 1,
        Windows = 2,
        SSN = 3
    }

    public static readonly AuthenticationMethod FORMS = new AuthenticationMethod (Values.Forms, "FORMS");
    public static readonly AuthenticationMethod WINDOWSAUTHENTICATION = new AuthenticationMethod (Values.Windows, "WINDOWS");
    public static readonly AuthenticationMethod SINGLESIGNON = new AuthenticationMethod (Values.SSN, "SSN");
}

So you get all of the benefits of Jakub Šturc's answer, plus we can use it with a switch statement like so:

var authenticationMethodVariable = AuthenticationMethod.FORMS;  // Set the "enum" value we want to use.
var methodName = authenticationMethodVariable.ToString();       // Get the user-friendly "name" of the "enum" value.

// Perform logic based on which "enum" value was chosen.
switch (authenticationMethodVariable.Value)
{
    case authenticationMethodVariable.Values.Forms: // Do something
        break;
    case authenticationMethodVariable.Values.Windows: // Do something
        break;
    case authenticationMethodVariable.Values.SSN: // Do something
        break;      
}
Teresa answered 20/1, 2014 at 21:13 Comment(5)
A shorter solution would be to remove the enums {} and instead keep a static count of how many Enums you have constructed. This also gives the benefit that you don't have to add a new instance you make to the enum list. e.g. public static int nextAvailable { get; private set; } then in the constructor this.Value = nextAvailable++;Ottava
Interesting idea @kjhf. My concern though would be that if somebody reorders the code, then the value assigned to the enum values might change as well. For example, this could result in the wrong enum value being retrieved when the enum value is saved to a file/database, the order of the "new AuthenticationMethod(...)" lines are changed (e.g. one is removed), and then running the app again and retrieving the enum value from the file/database; the enum value may not match the AuthenticationMethod that was originally saved.Teresa
Good point - though I hope in these particular cases people won't be relying on the enum's integer value (or reordering enum code.) -- and this value is purely used as a switch and possibly an alternative to .Equals() and .GetHashCode(). If concerned, you could always put a huge comment with "DO NOT REORDER" :pOttava
Can't you just overload the = operator to allow switch to work? I did this in VB and can now use it in select case statement.Rapt
@Rapt No, C# has stricter rules around the switch statement than VB. You can't use class instances for the Case statement; you can only use constant primitives.Teresa
W
13

I use a combination of several of the suggestions above, combined with some caching. Now, I got the idea from some code that I found somewhere on the net, but I can neither remember where I got it or find it. So if anyone ever finds something that looks similar please comment with the attribution.

Anyway, the usage involves the type converters, so if you are binding to the UI it 'just works'. You can extended with Jakub's pattern for quick code lookup by initializing from the type converter into the static methods.

The base usage would look like this

[TypeConverter(typeof(CustomEnumTypeConverter<MyEnum>))]
public enum MyEnum
{
    // The custom type converter will use the description attribute
    [Description("A custom description")]
    ValueWithCustomDescription,

   // This will be exposed exactly.
   Exact
}

The code for the custom enum type converter follows:

public class CustomEnumTypeConverter<T> : EnumConverter
    where T : struct
{
    private static readonly Dictionary<T,string> s_toString = 
      new Dictionary<T, string>();

    private static readonly Dictionary<string, T> s_toValue = 
      new Dictionary<string, T>();

    private static bool s_isInitialized;

    static CustomEnumTypeConverter()
    {
        System.Diagnostics.Debug.Assert(typeof(T).IsEnum,
          "The custom enum class must be used with an enum type.");
    }

    public CustomEnumTypeConverter() : base(typeof(T))
    {
        if (!s_isInitialized)
        {
            Initialize();
            s_isInitialized = true;
        }
    }

    protected void Initialize()
    {
        foreach (T item in Enum.GetValues(typeof(T)))
        {
            string description = GetDescription(item);
            s_toString[item] = description;
            s_toValue[description] = item;
        }
    }

    private static string GetDescription(T optionValue)
    {
        var optionDescription = optionValue.ToString();
        var optionInfo = typeof(T).GetField(optionDescription);
        if (Attribute.IsDefined(optionInfo, typeof(DescriptionAttribute)))
        {
            var attribute = 
              (DescriptionAttribute)Attribute.
                 GetCustomAttribute(optionInfo, typeof(DescriptionAttribute));
            return attribute.Description;
        }
        return optionDescription;
    }

    public override object ConvertTo(ITypeDescriptorContext context, 
       System.Globalization.CultureInfo culture, 
       object value, Type destinationType)
    {
        var optionValue = (T)value;

        if (destinationType == typeof(string) && 
            s_toString.ContainsKey(optionValue))
        {
            return s_toString[optionValue];
        }

        return base.ConvertTo(context, culture, value, destinationType);
    }

    public override object ConvertFrom(ITypeDescriptorContext context, 
       System.Globalization.CultureInfo culture, object value)
    {
        var stringValue = value as string;

        if (!string.IsNullOrEmpty(stringValue) && s_toValue.ContainsKey(stringValue))
        {
            return s_toValue[stringValue];
        }

        return base.ConvertFrom(context, culture, value);
    }
}

}

Woodpecker answered 8/1, 2009 at 15:52 Comment(2)
How to use it? thank. ex: MyEnum.ValueWithCustomDescription.??() or something?Hesychast
This answer was written about a decade ago, so I'm really not sure about the original context. The problem with SO is that it is around forever. I believe this was in relation to adding data to be shown on UIs like WinForms or WPF, in which case just binding the property or collection to the UI control would pick up the type converter directly.Woodpecker
D
12

Update: Visiting this page, 8 years later, after not touching C# for a long while, looks like my answer is no longer the best solution. I really like the converter solution tied with attribute-functions.

If you are reading this, please make sure you also check out other answers.
(hint: they are above this one)


As most of you, I really liked the selected answer by Jakub Šturc, but I also really hate to copy-paste code, and try to do it as little as I can.

So I decided I wanted an EnumBase class from which most of the functionality is inherited/built-in, leaving me to focus on the content instead of behavior.

The main problem with this approach is based on the fact that although Enum values are type-safe instances, the interaction is with the Static implementation of the Enum Class type. So with a little help of generics magic, I think I finally got the correct mix. Hope someone finds this as useful as I did.

I'll start with Jakub's example, but using inheritance and generics:

public sealed class AuthenticationMethod : EnumBase<AuthenticationMethod, int>
{
    public static readonly AuthenticationMethod FORMS =
        new AuthenticationMethod(1, "FORMS");
    public static readonly AuthenticationMethod WINDOWSAUTHENTICATION =
        new AuthenticationMethod(2, "WINDOWS");
    public static readonly AuthenticationMethod SINGLESIGNON =
        new AuthenticationMethod(3, "SSN");

    private AuthenticationMethod(int Value, String Name)
        : base( Value, Name ) { }
    public new static IEnumerable<AuthenticationMethod> All
    { get { return EnumBase<AuthenticationMethod, int>.All; } }
    public static explicit operator AuthenticationMethod(string str)
    { return Parse(str); }
}

And here is the base class:

using System;
using System.Collections.Generic;
using System.Linq; // for the .AsEnumerable() method call

// E is the derived type-safe-enum class
// - this allows all static members to be truly unique to the specific
//   derived class
public class EnumBase<E, T> where E: EnumBase<E, T>
{
    #region Instance code
    public T Value { get; private set; }
    public string Name { get; private set; }

    protected EnumBase(T EnumValue, string Name)
    {
        Value = EnumValue;
        this.Name = Name;
        mapping.Add(Name, this);
    }

    public override string ToString() { return Name; }
    #endregion

    #region Static tools
    static private readonly Dictionary<string, EnumBase<E, T>> mapping;
    static EnumBase() { mapping = new Dictionary<string, EnumBase<E, T>>(); }
    protected static E Parse(string name)
    {
        EnumBase<E, T> result;
        if (mapping.TryGetValue(name, out result))
        {
            return (E)result;
        }

        throw new InvalidCastException();
    }
    // This is protected to force the child class to expose it's own static
    // method.
    // By recreating this static method at the derived class, static
    // initialization will be explicit, promising the mapping dictionary
    // will never be empty when this method is called.
    protected static IEnumerable<E> All
    { get { return mapping.Values.AsEnumerable().Cast<E>(); } }
    #endregion
}
Diplodocus answered 2/12, 2011 at 7:43 Comment(1)
You may be able to call the derived static constructor from the base static constructor. I'm still looking into it, but so far I have found no issues with it: #55290534Hydrometeor
H
12

In your question you never said that you actually need the numeric value of the enum anywhere.

If you do not and just need an enum of type string (which is not an integral type so can not be a base of enum) here is a way:

    static class AuthenticationMethod
    {
        public static readonly string
            FORMS = "Forms",
            WINDOWSAUTHENTICATION = "WindowsAuthentication";
    }

you can use the same syntax as enum to reference it

if (bla == AuthenticationMethod.FORMS)

It will be a bit slower than with numeric values (comparing strings instead of numbers) but on the plus side it is not using reflection (slow) to access the string.

Hunker answered 17/4, 2015 at 21:50 Comment(1)
if you use "const" instead of "static readonly" then you can use the values as case labels in a switch statement.Panoptic
R
11

If you've come here looking to implement a simple "Enum" but whose values are strings instead of ints, here is the simplest solution:

    public sealed class MetricValueList
    {
        public static readonly string Brand = "A4082457-D467-E111-98DC-0026B9010912";
        public static readonly string Name = "B5B5E167-D467-E111-98DC-0026B9010912";
    }

Implementation:

var someStringVariable = MetricValueList.Brand;
Rhyolite answered 22/3, 2012 at 13:12 Comment(2)
It's probably better to make the variables consts instead of using static readonly.Tychonn
consts are not good for publicly accessible classes, as they are baked in compile time, you cannot replace a third party DLL without recompiling your whole code with consts.The performance offset of consts vs static readonly is negligible.Counterpressure
R
11

How I solved this as an extension method:

using System.ComponentModel;
public static string GetDescription(this Enum value)
{
    var descriptionAttribute = (DescriptionAttribute)value.GetType()
        .GetField(value.ToString())
        .GetCustomAttributes(false)
        .Where(a => a is DescriptionAttribute)
        .FirstOrDefault();

    return descriptionAttribute != null ? descriptionAttribute.Description : value.ToString();
}

Enum:

public enum OrderType
{
    None = 0,
    [Description("New Card")]
    NewCard = 1,
    [Description("Reload")]
    Refill = 2
}

Usage (where o.OrderType is a property with the same name as the enum):

o.OrderType.GetDescription()

Which gives me a string of "New Card" or "Reload" instead of the actual enum value NewCard and Refill.

Rheometer answered 17/4, 2012 at 1:29 Comment(2)
For completeness you should include a copy of your DescriptionAttribute class.Pregnable
Bernie, DescriptionAttribute is in System.ComponentModelGeotropism
P
10

I agree with Keith, but I can't vote up (yet).

I use a static method and swith statement to return exactly what I want. In the database I store tinyint and my code only uses the actual enum, so the strings are for UI requirements. After numerous testing this resulted in the best performance and most control over the output.

public static string ToSimpleString(this enum)
{
     switch (enum)
     {
         case ComplexForms:
             return "ComplexForms";
             break;
     }
}

public static string ToFormattedString(this enum)
{
     switch (enum)
     {
         case ComplexForms:
             return "Complex Forms";
             break;
     }
}

However, by some accounts, this leads to a possible maintenance nightmare and some code smell. I try to keep an eye for enums that are long and a lot of enums, or those that change frequently. Otherwise, this has been a great solution for me.

Phage answered 8/1, 2009 at 15:18 Comment(0)
M
7

When I'm confronted with this problem, there are a couple of questions that I try to find the answers to first:

  • Are the names of my enum values sufficiently friendly for the purpose, or do I need to provide friendlier ones?
  • Do I need to round-trip? That is, will I need to take text values and parse them into enum values?
  • Is this something I need to do for many enums in my project, or just one?
  • What kind of UI elements will I be presenting this information in - in particular, will I be binding to the UI, or using property sheets?
  • Does this need to be localizable?

The simplest way to do this is with Enum.GetValue (and support round-tripping using Enum.Parse). It's also often worth building a TypeConverter, as Steve Mitcham suggests, to support UI binding. (It's not necessary to build a TypeConverter when you're using property sheets, which is one of the nice things about property sheets. Though lord knows they have their own issues.)

In general, if the answers to the above questions suggest that's not going to work, my next step is to create and populate a static Dictionary<MyEnum, string>, or possibly a Dictionary<Type, Dictionary<int, string>>. I tend to skip the intermediate decorate-the-code-with-attributes step because what's usually coming down the pike next is the need to change the friendly values after deployment (often, but not always, because of localization).

Minuteman answered 8/1, 2009 at 21:14 Comment(0)
M
7

I created a base class for creating string-valued enums in .NET. It is just one C# file that you can copy & paste into your projects, or install via NuGet package named StringEnum. GitHub Repo

  • Intellisense will suggest the enum name if the class is annotated with the xml comment <completitionlist>. (Works in both C# and VB)

Intellisense demo

  • Usage similar to a regular enum:
///<completionlist cref="HexColor"/> 
class HexColor : StringEnum<HexColor>
{
    public static readonly HexColor Blue = Create("#FF0000");
    public static readonly HexColor Green = Create("#00FF00");
    public static readonly HexColor Red = Create("#000FF");
}
    // Static Parse Method
    HexColor.Parse("#FF0000") // => HexColor.Red
    HexColor.Parse("#ff0000", caseSensitive: false) // => HexColor.Red
    HexColor.Parse("invalid") // => throws InvalidOperationException

    // Static TryParse method.
    HexColor.TryParse("#FF0000") // => HexColor.Red
    HexColor.TryParse("#ff0000", caseSensitive: false) // => HexColor.Red
    HexColor.TryParse("invalid") // => null

    // Parse and TryParse returns the preexistent instances
    object.ReferenceEquals(HexColor.Parse("#FF0000"), HexColor.Red) // => true

    // Conversion from your `StringEnum` to `string`
    string myString1 = HexColor.Red.ToString(); // => "#FF0000"
    string myString2 = HexColor.Red; // => "#FF0000" (implicit cast)

Instalation:

  • Paste the following StringEnum base class to your project. (latest version)
  • Or install StringEnum NuGet package, which is based on .Net Standard 1.0 so it runs on .Net Core >= 1.0, .Net Framework >= 4.5, Mono >= 4.6, etc.
    /// <summary>
    /// Base class for creating string-valued enums in .NET.<br/>
    /// Provides static Parse() and TryParse() methods and implicit cast to string.
    /// </summary>
    /// <example> 
    /// <code>
    /// class Color : StringEnum &lt;Color&gt;
    /// {
    ///     public static readonly Color Blue = Create("Blue");
    ///     public static readonly Color Red = Create("Red");
    ///     public static readonly Color Green = Create("Green");
    /// }
    /// </code>
    /// </example>
    /// <typeparam name="T">The string-valued enum type. (i.e. class Color : StringEnum&lt;Color&gt;)</typeparam>
    public abstract class StringEnum<T> : IEquatable<T> where T : StringEnum<T>, new()
    {
        protected string Value;
        private static Dictionary<string, T> valueDict = new Dictionary<string, T>();
        protected static T Create(string value)
        {
            if (value == null)
                return null; // the null-valued instance is null.

            var result = new T() { Value = value };
            valueDict.Add(value, result);
            return result;
        }

        public static implicit operator string(StringEnum<T> enumValue) => enumValue.Value;
        public override string ToString() => Value;

        public static bool operator !=(StringEnum<T> o1, StringEnum<T> o2) => o1?.Value != o2?.Value;
        public static bool operator ==(StringEnum<T> o1, StringEnum<T> o2) => o1?.Value == o2?.Value;

        public override bool Equals(object other) => this.Value.Equals((other as T)?.Value ?? (other as string));
        bool IEquatable<T>.Equals(T other) => this.Value.Equals(other.Value);
        public override int GetHashCode() => Value.GetHashCode();

        /// <summary>
        /// Parse the <paramref name="value"/> specified and returns a valid <typeparamref name="T"/> or else throws InvalidOperationException.
        /// </summary>
        /// <param name="value">The string value representad by an instance of <typeparamref name="T"/>. Matches by string value, not by the member name.</param>
        /// <param name="caseSensitive">If true, the strings must match case and takes O(log n). False allows different case but is little bit slower (O(n))</param>
        public static T Parse(string value, bool caseSensitive = true)
        {
            var result = TryParse(value, caseSensitive);
            if (result == null)
                throw new InvalidOperationException((value == null ? "null" : $"'{value}'") + $" is not a valid {typeof(T).Name}");

            return result;
        }

        /// <summary>
        /// Parse the <paramref name="value"/> specified and returns a valid <typeparamref name="T"/> or else returns null.
        /// </summary>
        /// <param name="value">The string value representad by an instance of <typeparamref name="T"/>. Matches by string value, not by the member name.</param>
        /// <param name="caseSensitive">If true, the strings must match case. False allows different case but is slower: O(n)</param>
        public static T TryParse(string value, bool caseSensitive = true)
        {
            if (value == null) return null;
            if (valueDict.Count == 0) System.Runtime.CompilerServices.RuntimeHelpers.RunClassConstructor(typeof(T).TypeHandle); // force static fields initialization
            if (caseSensitive)
            {
                if (valueDict.TryGetValue(value, out T item))
                    return item;
                else
                    return null;
            }
            else
            {
                // slower O(n) case insensitive search
                return valueDict.FirstOrDefault(f => f.Key.Equals(value, StringComparison.OrdinalIgnoreCase)).Value;
                // Why Ordinal? => https://esmithy.net/2007/10/15/why-stringcomparisonordinal-is-usually-the-right-choice/
            }
        }
    }
Miscreance answered 24/10, 2019 at 4:1 Comment(0)
L
6

I wanted to post this as a comment to the post quoted below but couldn't because I don't have enough rep. The code contained an error and I wanted to point this out to individuals trying to use this solution:

[TypeConverter(typeof(CustomEnumTypeConverter(typeof(MyEnum))]
public enum MyEnum
{
  // The custom type converter will use the description attribute
  [Description("A custom description")]
  ValueWithCustomDescription,
  // This will be exposed exactly.
  Exact
}

should be

[TypeConverter(typeof(CustomEnumTypeConverter<MyEnum>))]
public enum MyEnum
{
  // The custom type converter will use the description attribute
  [Description("A custom description")]
  ValueWithCustomDescription,

  // This will be exposed exactly.
  Exact
}
Lilienthal answered 13/12, 2010 at 2:57 Comment(0)
G
5

My variant

public struct Colors
{
    private String current;

    private static string red = "#ff0000";
    private static string green = "#00ff00";
    private static string blue = "#0000ff";

    private static IList<String> possibleColors; 

    public static Colors Red { get { return (Colors) red; } }
    public static Colors Green { get { return (Colors) green; } }
    public static Colors Blue { get { return (Colors) blue; } }

    static Colors()
    {
        possibleColors = new List<string>() {red, green, blue};
    }

    public static explicit operator String(Colors value)
    {
        return value.current;
    }

    public static explicit operator Colors(String value)
    {
        if (!possibleColors.Contains(value))
        {
            throw new InvalidCastException();
        }

        Colors color = new Colors();
        color.current = value;
        return color;
    }

    public static bool operator ==(Colors left, Colors right)
    {
        return left.current == right.current;
    }

    public static bool operator !=(Colors left, Colors right)
    {
        return left.current != right.current;
    }

    public bool Equals(Colors other)
    {
        return Equals(other.current, current);
    }

    public override bool Equals(object obj)
    {
        if (ReferenceEquals(null, obj)) return false;
        if (obj.GetType() != typeof(Colors)) return false;
        return Equals((Colors)obj);
    }

    public override int GetHashCode()
    {
        return (current != null ? current.GetHashCode() : 0);
    }

    public override string ToString()
    {
        return current;
    }
}

Code looks a bit ugly, but usages of this struct are pretty presentative.

Colors color1 = Colors.Red;
Console.WriteLine(color1); // #ff0000

Colors color2 = (Colors) "#00ff00";
Console.WriteLine(color2); // #00ff00

// Colors color3 = "#0000ff"; // Compilation error
// String color4 = Colors.Red; // Compilation error

Colors color5 = (Colors)"#ff0000";
Console.WriteLine(color1 == color5); // True

Colors color6 = (Colors)"#00ff00";
Console.WriteLine(color1 == color6); // False

Also, I think, if a lot of such enums required, code generation (e.g. T4) might be used.

Geer answered 1/2, 2012 at 16:0 Comment(0)
R
4

Option 1:

public sealed class FormsAuth
{
     public override string ToString{return "Forms Authtentication";}
}
public sealed class WindowsAuth
{
     public override string ToString{return "Windows Authtentication";}
}

public sealed class SsoAuth
{
     public override string ToString{return "SSO";}
}

and then

object auth = new SsoAuth(); //or whatever

//...
//...
// blablabla

DoSomethingWithTheAuth(auth.ToString());

Option 2:

public enum AuthenticationMethod
{
        FORMS = 1,
        WINDOWSAUTHENTICATION = 2,
        SINGLESIGNON = 3
}

public class MyClass
{
    private Dictionary<AuthenticationMethod, String> map = new Dictionary<AuthenticationMethod, String>();
    public MyClass()
    {
         map.Add(AuthenticationMethod.FORMS,"Forms Authentication");
         map.Add(AuthenticationMethod.WINDOWSAUTHENTICATION ,"Windows Authentication");
         map.Add(AuthenticationMethod.SINGLESIGNON ,"SSo Authentication");
    }
}
Recusancy answered 8/1, 2009 at 15:41 Comment(0)
S
4

If you think about the problem we're trying to solve, it's not an enum we need at all. We need an object that allows a certain number of values to be associated with eachother; in other words, to define a class.

Jakub Šturc's type-safe enum pattern is the best option I see here.

Look at it:

  • It has a private constructor so only the class itself can define the allowed values.
  • It is a sealed class so values can't be modifed through inheritence.
  • It is type-safe, allowing your methods to require only that type.
  • There is no reflection performance hit incurred by accessing the values.
  • And lastly, it can be modified to associate more than two fields together, for example a Name, Description, and a numeric Value.
Speleology answered 20/11, 2009 at 20:55 Comment(0)
L
4

for me, the pragmatic approach is class inside class, sample:

public class MSEModel
{
    class WITS
    {
        public const string DATE = "5005";
        public const string TIME = "5006";
        public const string MD = "5008";
        public const string ROP = "5075";
        public const string WOB = "5073";
        public const string RPM = "7001";
... 
    }
Labium answered 6/2, 2013 at 13:46 Comment(0)
G
3

Here is yet another way to accomplish the task of associating strings with enums:

struct DATABASE {
    public enum enums {NOTCONNECTED, CONNECTED, ERROR}
    static List<string> strings =
        new List<string>() {"Not Connected", "Connected", "Error"};

    public string GetString(DATABASE.enums value) {
        return strings[(int)value];
    }
}

This method is called like this:

public FormMain() {
    DATABASE dbEnum;

    string enumName = dbEnum.GetString(DATABASE.enums.NOTCONNECTED);
}

You can group related enums in their own struct. Since this method uses the enum type, you can use Intellisense to display the list of enums when making the GetString() call.

You can optionally use the new operator on the DATABASE struct. Not using it means the strings List is not allocated until the first GetString() call is made.

Gyrus answered 21/2, 2013 at 14:59 Comment(0)
G
3

A lot of great answers here but in my case did not solve what I wanted out of an "string enum", which was:

  1. Usable in a switch statement e.g switch(myEnum)
  2. Can be used in function parameters e.g. foo(myEnum type)
  3. Can be referenced e.g. myEnum.FirstElement
  4. I can use strings e.g. foo("FirstElement") == foo(myEnum.FirstElement)

1,2 & 4 can actually be solved with a C# Typedef of a string (since strings are switchable in c#)

3 can be solved by static const strings. So if you have the same needs, this is the simplest approach:

public sealed class Types
{

    private readonly String name;

    private Types(String name)
    {
        this.name = name;

    }

    public override String ToString()
    {
        return name;
    }

    public static implicit operator Types(string str)
    {
        return new Types(str);

    }
    public static implicit operator string(Types str)
    {
        return str.ToString();
    }


    #region enum

    public const string DataType = "Data";
    public const string ImageType = "Image";
    public const string Folder = "Folder";
    #endregion

}

This allows for example:

    public TypeArgs(Types SelectedType)
    {
        Types SelectedType = SelectedType
    }

and

public TypeObject CreateType(Types type)
    {
        switch (type)
        {

            case Types.ImageType:
              //
                break;

            case Types.DataType:
             //
                break;

        }
    }

Where CreateType can be called with a string or a type. However the downside is that any string is automatically a valid enum, this could be modified but then it would require some kind of init function...or possibly make they explicit cast internal?

Now if an int value was important to you (perhaps for comparison speed), you could use some ideas from Jakub Šturc fantastic answer and do something a bit crazy, this is my stab at it:

    public sealed class Types
{
    private static readonly Dictionary<string, Types> strInstance = new Dictionary<string, Types>();
    private static readonly Dictionary<int, Types> intInstance = new Dictionary<int, Types>();

    private readonly String name;
    private static int layerTypeCount = 0;
    private int value;
    private Types(String name)
    {
        this.name = name;
        value = layerTypeCount++;
        strInstance[name] = this;
        intInstance[value] = this;
    }

    public override String ToString()
    {
        return name;
    }


    public static implicit operator Types(int val)
    {
        Types result;
        if (intInstance.TryGetValue(val, out result))
            return result;
        else
            throw new InvalidCastException();
    }

    public static implicit operator Types(string str)
    {
        Types result;
        if (strInstance.TryGetValue(str, out result))
        {
            return result;
        }
        else
        {
            result = new Types(str);
            return result;
        }

    }
    public static implicit operator string(Types str)
    {
        return str.ToString();
    }

    public static bool operator ==(Types a, Types b)
    {
        return a.value == b.value;
    }
    public static bool operator !=(Types a, Types b)
    {
        return a.value != b.value;
    }

    #region enum

    public const string DataType = "Data";
    public const string ImageType = "Image";

    #endregion

}

but of course "Types bob = 4;" would be meaningless unless you had initialized them first which would sort of defeat the point...

But in theory TypeA == TypeB would be quicker...

Gosport answered 10/12, 2014 at 10:30 Comment(0)
L
3

If I'm understanding you correctly, you can simply use .ToString() to retrieve the name of the enum from the value (Assuming it's already cast as the Enum); If you had the naked int (lets say from a database or something) you can first cast it to the enum. Both methods below will get you the enum name.

AuthenticationMethod myCurrentSetting = AuthenticationMethod.FORMS;
Console.WriteLine(myCurrentSetting); // Prints: FORMS
string name = Enum.GetNames(typeof(AuthenticationMethod))[(int)myCurrentSetting-1];
Console.WriteLine(name); // Prints: FORMS

Keep in mind though, the second technique assumes you are using ints and your index is 1 based (not 0 based). The function GetNames also is quite heavy by comparison, you are generating a whole array each time it's called. As you can see in the first technique, .ToString() is actually called implicitly. Both of these are already mentioned in the answers of course, I'm just trying to clarify the differences between them.

Ledeen answered 28/9, 2015 at 9:33 Comment(0)
F
3

old post but...

The answer to this may actually be very simple. Use Enum.ToString() function

There are 6 overloads of this function, you can use Enum.Tostring("F") or Enum.ToString() to return the string value. No need to bother with anything else. Here is a working Demo

Note that this solution may not work for all compilers (this demo does not work as expected) but at least it works for the latest compiler.

Fragmental answered 3/10, 2016 at 7:33 Comment(0)
L
2

based on the MSDN: http://msdn.microsoft.com/en-us/library/cc138362.aspx

foreach (string str in Enum.GetNames(typeof(enumHeaderField)))
{
    Debug.WriteLine(str);
}

str will be the names of the fields

Labannah answered 20/6, 2010 at 12:33 Comment(1)
this will give the name of the enum, you can also use ToString() for that, this is not what was asked. checkout msdn.microsoft.com/en-us/library/system.enum.getname.aspx for more info about your bubuBuckeen
C
2

Well, after reading all of the above I feel that the guys have over complicated the issue of transforming enumerators into strings. I liked the idea of having attributes over enumerated fields but i think that attributes are mainly used for Meta-data, but in your case i think that all you need is some sort of localization.

public enum Color 
{ Red = 1, Green = 2, Blue = 3}


public static EnumUtils 
{
   public static string GetEnumResourceString(object enumValue)
    {
        Type enumType = enumValue.GetType();
        string value = Enum.GetName(enumValue.GetType(), enumValue);
        string resourceKey = String.Format("{0}_{1}", enumType.Name, value);
        string result = Resources.Enums.ResourceManager.GetString(resourceKey);
        if (string.IsNullOrEmpty(result))
        {
            result = String.Format("{0}", value);
        }
        return result;
    }
}

Now if we try to call the above method we can call it this way

public void Foo()
{
  var col = Color.Red;
  Console.WriteLine (EnumUtils.GetEnumResourceString (col));
}

All you need to do is just create a resource file containing all the enumerator values and the corresponding strings

Resource Name          Resource Value
Color_Red              My String Color in Red
Color_Blue             Blueeey
Color_Green            Hulk Color

What is actually very nice about that is that it will be very helpful if you need your application to be localized, since all you need to do is just create another resource file with your new language! and Voe-la!

Clot answered 15/2, 2013 at 19:21 Comment(0)
H
2
Enum.GetName(typeof(MyEnum), (int)MyEnum.FORMS)
Enum.GetName(typeof(MyEnum), (int)MyEnum.WINDOWSAUTHENTICATION)
Enum.GetName(typeof(MyEnum), (int)MyEnum.SINGLESIGNON)

outputs are:

"FORMS"

"WINDOWSAUTHENTICATION"

"SINGLESIGNON"

Haematoma answered 10/4, 2019 at 9:14 Comment(0)
N
1

When I am in a situation like that I propose the solution below.

And as a consuming class you could have

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace MyApp.Dictionaries
{
    class Greek
    {

        public static readonly string Alpha = "Alpha";
        public static readonly string Beta = "Beta";
        public static readonly string Gamma = "Gamma";
        public static readonly string Delta = "Delta";


        private static readonly BiDictionary<int, string> Dictionary = new BiDictionary<int, string>();


        static Greek() {
            Dictionary.Add(1, Alpha);
            Dictionary.Add(2, Beta);
            Dictionary.Add(3, Gamma);
            Dictionary.Add(4, Delta);
        }

        public static string getById(int id){
            return Dictionary.GetByFirst(id);
        }

        public static int getByValue(string value)
        {
            return Dictionary.GetBySecond(value);
        }

    }
}

And using a bidirectional dictionary: Based on this (https://mcmap.net/q/54501/-getting-multiple-keys-of-specified-value-of-a-generic-dictionary) assuming that the keys will be associated with single values in the dictionary and similar to (https://mcmap.net/q/54501/-getting-multiple-keys-of-specified-value-of-a-generic-dictionary) but a bit more elegant. This dictionary is also enumerable and you can go back and forth from ints to strings. Also you don't have to have any string in your codebase with the exception of this class.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Collections;

namespace MyApp.Dictionaries
{

    class BiDictionary<TFirst, TSecond> : IEnumerable
    {
        IDictionary<TFirst, TSecond> firstToSecond = new Dictionary<TFirst, TSecond>();
        IDictionary<TSecond, TFirst> secondToFirst = new Dictionary<TSecond, TFirst>();

        public void Add(TFirst first, TSecond second)
        {
            firstToSecond.Add(first, second);
            secondToFirst.Add(second, first);
        }

        public TSecond this[TFirst first]
        {
            get { return GetByFirst(first); }
        }

        public TFirst this[TSecond second]
        {
            get { return GetBySecond(second); }
        }

        public TSecond GetByFirst(TFirst first)
        {
            return firstToSecond[first];
        }

        public TFirst GetBySecond(TSecond second)
        {
            return secondToFirst[second];
        }

        public IEnumerator GetEnumerator()
        {
            return GetFirstEnumerator();
        }

        public IEnumerator GetFirstEnumerator()
        {
            return firstToSecond.GetEnumerator();
        }

        public IEnumerator GetSecondEnumerator()
        {
            return secondToFirst.GetEnumerator();
        }
    }
}
Nigritude answered 3/11, 2014 at 22:3 Comment(0)
D
1

For larger string enum sets, the listed examples can become tiresome. If you want a list of status codes, or a list of other string based enums, an attribute system is annoying to use, and a static class with instances of itself is annoying to configure. For my own solution, I make use of T4 templating to make it easier to have string-backed enums. The result comes out similar to how the HttpMethod class works.

You can use it like this:

    string statusCode = ResponseStatusCode.SUCCESS; // Automatically converts to string when needed
    ResponseStatusCode codeByValueOf = ResponseStatusCode.ValueOf(statusCode); // Returns null if not found

    // Implements TypeConverter so you can use it with string conversion methods.
    var converter = System.ComponentModel.TypeDescriptor.GetConverter(typeof(ResponseStatusCode));
    ResponseStatusCode code = (ResponseStatusCode) converter.ConvertFromInvariantString(statusCode);

    // You can get a full list of the values
    bool canIterateOverValues = ResponseStatusCode.Values.Any(); 

    // Comparisons are by value of the "Name" property. Not by memory pointer location.
    bool implementsByValueEqualsEqualsOperator = "SUCCESS" == ResponseStatusCode.SUCCESS; 

You start out with a Enum.tt file.

<#@ include file="StringEnum.ttinclude" #>


<#+
public static class Configuration
{
    public static readonly string Namespace = "YourName.Space";
    public static readonly string EnumName = "ResponseStatusCode";
    public static readonly bool IncludeComments = true;

    public static readonly object Nodes = new
    {
        SUCCESS = "The response was successful.",
        NON_SUCCESS = "The request was not successful.",
        RESOURCE_IS_DISCONTINUED = "The resource requested has been discontinued and can no longer be accessed."
    };
}
#>

Then, you add in your StringEnum.ttinclude file.

<#@ template debug="false" hostspecific="false" language="C#" #>
<#@ assembly name="System.Core" #>
<#@ import namespace="System" #>
<#@ import namespace="System.Linq" #>
<#@ import namespace="System.Text" #>
<#@ import namespace="System.Reflection" #>
<#@ import namespace="System.Collections.Generic" #>
<#@ output extension=".cs" #>
<#@ CleanupBehavior processor="T4VSHost" CleanupAfterProcessingtemplate="true" #>

//------------------------------------------------------------------------------
// <auto-generated>
//     This code was generated by a tool.
//
//     Changes to this file may cause incorrect behavior and will be lost if
//     the code is regenerated.
// </auto-generated>
//------------------------------------------------------------------------------

using System;
using System.Linq;
using System.Collections.Generic;
using System.ComponentModel;
using System.Globalization;

namespace <#= Configuration.Namespace #>
{
    /// <summary>
    /// TypeConverter implementations allow you to use features like string.ToNullable(T).
    /// </summary>
    public class <#= Configuration.EnumName #>TypeConverter : TypeConverter
    {
        public override bool CanConvertFrom(ITypeDescriptorContext context, Type sourceType)
        {
            return sourceType == typeof(string) || base.CanConvertFrom(context, sourceType);
        }

        public override object ConvertFrom(ITypeDescriptorContext context, CultureInfo culture, object value)
        {
            var casted = value as string;

            if (casted != null)
            {
                var result = <#= Configuration.EnumName #>.ValueOf(casted);
                if (result != null)
                {
                    return result;
                }
            }

            return base.ConvertFrom(context, culture, value);
        }

        public override object ConvertTo(ITypeDescriptorContext context, CultureInfo culture, object value, Type destinationType)
        {
            var casted = value as <#= Configuration.EnumName #>;
            if (casted != null && destinationType == typeof(string))
            {
                return casted.ToString();
            }

            return base.ConvertTo(context, culture, value, destinationType);
        }
    }

    [TypeConverter(typeof(<#= Configuration.EnumName #>TypeConverter))]
    public class <#= Configuration.EnumName #> : IEquatable<<#= Configuration.EnumName #>>
    {
//---------------------------------------------------------------------------------------------------
// V A L U E S _ L I S T
//---------------------------------------------------------------------------------------------------
<# Write(Helpers.PrintEnumProperties(Configuration.Nodes)); #>

        private static List<<#= Configuration.EnumName #>> _list { get; set; } = null;
        public static List<<#= Configuration.EnumName #>> ToList()
        {
            if (_list == null)
            {
                _list = typeof(<#= Configuration.EnumName #>).GetFields().Where(x => x.IsStatic && x.IsPublic && x.FieldType == typeof(<#= Configuration.EnumName #>))
                    .Select(x => x.GetValue(null)).OfType<<#= Configuration.EnumName #>>().ToList();
            }

            return _list;
        }

        public static List<<#= Configuration.EnumName #>> Values()
        {
            return ToList();
        }

        /// <summary>
        /// Returns the enum value based on the matching Name of the enum. Case-insensitive search.
        /// </summary>
        /// <param name="key"></param>
        /// <returns></returns>
        public static <#= Configuration.EnumName #> ValueOf(string key)
        {
            return ToList().FirstOrDefault(x => string.Compare(x.Name, key, true) == 0);
        }


//---------------------------------------------------------------------------------------------------
// I N S T A N C E _ D E F I N I T I O N
//---------------------------------------------------------------------------------------------------      
        public string Name { get; private set; }
        public string Description { get; private set; }
        public override string ToString() { return this.Name; }

        /// <summary>
        /// Implcitly converts to string.
        /// </summary>
        /// <param name="d"></param>
        public static implicit operator string(<#= Configuration.EnumName #> d)
        {
            return d.ToString();
        }

        /// <summary>
        /// Compares based on the == method. Handles nulls gracefully.
        /// </summary>
        /// <param name="a"></param>
        /// <param name="b"></param>
        /// <returns></returns>
        public static bool operator !=(<#= Configuration.EnumName #> a, <#= Configuration.EnumName #> b)
        {
            return !(a == b);
        }

        /// <summary>
        /// Compares based on the .Equals method. Handles nulls gracefully.
        /// </summary>
        /// <param name="a"></param>
        /// <param name="b"></param>
        /// <returns></returns>
        public static bool operator ==(<#= Configuration.EnumName #> a, <#= Configuration.EnumName #> b)
        {
            return a?.ToString() == b?.ToString();
        }

        /// <summary>
        /// Compares based on the .ToString() method
        /// </summary>
        /// <param name="o"></param>
        /// <returns></returns>
        public override bool Equals(object o)
        {
            return this.ToString() == o?.ToString();
        }

        /// <summary>
        /// Compares based on the .ToString() method
        /// </summary>
        /// <param name="other"></param>
        /// <returns></returns>
        public bool Equals(<#= Configuration.EnumName #> other)
        {
            return this.ToString() == other?.ToString();
        }

        /// <summary>
        /// Compares based on the .Name property
        /// </summary>
        /// <returns></returns>
        public override int GetHashCode()
        {
            return this.Name.GetHashCode();
        }
    }
}

<#+

public static class Helpers
{
        public static string PrintEnumProperties(object nodes)
        {
            string o = "";
            Type nodesTp = Configuration.Nodes.GetType();
            PropertyInfo[] props = nodesTp.GetProperties().OrderBy(p => p.Name).ToArray();

            for(int i = 0; i < props.Length; i++)
            {
                var prop = props[i];
                if (Configuration.IncludeComments)
                {
                    o += "\r\n\r\n";
                    o += "\r\n        ///<summary>";
                    o += "\r\n        /// "+Helpers.PrintPropertyValue(prop, Configuration.Nodes);
                    o += "\r\n        ///</summary>";
                }

                o += "\r\n        public static readonly "+Configuration.EnumName+" "+prop.Name+ " = new "+Configuration.EnumName+"(){ Name = \""+prop.Name+"\", Description = "+Helpers.PrintPropertyValue(prop, Configuration.Nodes)+ "};";
            }

            o += "\r\n\r\n";

            return o;
        }

        private static Dictionary<string, string> GetValuesMap()
        {
            Type nodesTp = Configuration.Nodes.GetType();
            PropertyInfo[] props= nodesTp.GetProperties();
            var dic = new Dictionary<string,string>();
            for(int i = 0; i < props.Length; i++)
            {
                var prop = nodesTp.GetProperties()[i];
                dic[prop.Name] = prop.GetValue(Configuration.Nodes).ToString();
            }
            return dic;
        }

        public static string PrintMasterValuesMap(object nodes)
        {
            Type nodesTp = Configuration.Nodes.GetType();
            PropertyInfo[] props= nodesTp.GetProperties();
            string o = "        private static readonly Dictionary<string, string> ValuesMap = new Dictionary<string, string>()\r\n        {";
            for(int i = 0; i < props.Length; i++)
            {
                var prop = nodesTp.GetProperties()[i];
                o += "\r\n            { \""+prop.Name+"\", "+(Helpers.PrintPropertyValue(prop,Configuration.Nodes)+" },");
            }
            o += ("\r\n        };\r\n");

            return o;
        }


        public static string PrintPropertyValue(PropertyInfo prop, object objInstance)
        {
            switch(prop.PropertyType.ToString()){
                case "System.Double":
                    return prop.GetValue(objInstance).ToString()+"D";
                case "System.Float":
                    return prop.GetValue(objInstance).ToString()+"F";
                case "System.Decimal":
                    return prop.GetValue(objInstance).ToString()+"M";
                case "System.Long":
                    return prop.GetValue(objInstance).ToString()+"L";
                case "System.Boolean":
                case "System.Int16":
                case "System.Int32":
                    return prop.GetValue(objInstance).ToString().ToLowerInvariant();
                case "System.String":
                    return "\""+prop.GetValue(objInstance)+"\"";
            }

            return prop.GetValue(objInstance).ToString();
        }

        public static string _ (int numSpaces)
        {
            string o = "";
            for(int i = 0; i < numSpaces; i++){
                o += " ";
            }

            return o;
        }
}
#>

Finally, you recompile your Enum.tt file and the output looks like this:

//------------------------------------------------------------------------------
// <auto-generated>
//     This code was generated by a tool.
//
//     Changes to this file may cause incorrect behavior and will be lost if
//     the code is regenerated.
// </auto-generated>
//------------------------------------------------------------------------------

using System;
using System.Linq;
using System.Collections.Generic;

namespace YourName.Space
{
    public class ResponseStatusCode
    {
//---------------------------------------------------------------------------------------------------
// V A L U E S _ L I S T 
//---------------------------------------------------------------------------------------------------



        ///<summary>
        /// "The response was successful."
        ///</summary>
        public static readonly ResponseStatusCode SUCCESS = new ResponseStatusCode(){ Name = "SUCCESS", Description = "The response was successful."};


        ///<summary>
        /// "The request was not successful."
        ///</summary>
        public static readonly ResponseStatusCode NON_SUCCESS = new ResponseStatusCode(){ Name = "NON_SUCCESS", Description = "The request was not successful."};


        ///<summary>
        /// "The resource requested has been discontinued and can no longer be accessed."
        ///</summary>
        public static readonly ResponseStatusCode RESOURCE_IS_DISCONTINUED = new ResponseStatusCode(){ Name = "RESOURCE_IS_DISCONTINUED", Description = "The resource requested has been discontinued and can no longer be accessed."};


        private static List<ResponseStatusCode> _list { get; set; } = null;
        public static List<ResponseStatusCode> ToList()
        {
            if (_list == null)
            {
                _list = typeof(ResponseStatusCode).GetFields().Where(x => x.IsStatic && x.IsPublic && x.FieldType == typeof(ResponseStatusCode))
                    .Select(x => x.GetValue(null)).OfType<ResponseStatusCode>().ToList();
            }

            return _list;
        }

        public static List<ResponseStatusCode> Values()
        {
            return ToList();
        }

        /// <summary>
        /// Returns the enum value based on the matching Name of the enum. Case-insensitive search.
        /// </summary>
        /// <param name="key"></param>
        /// <returns></returns>
        public static ResponseStatusCode ValueOf(string key)
        {
            return ToList().FirstOrDefault(x => string.Compare(x.Name, key, true) == 0);
        }


//---------------------------------------------------------------------------------------------------
// I N S T A N C E _ D E F I N I T I O N 
//---------------------------------------------------------------------------------------------------       
        public string Name { get; set; }
        public string Description { get; set; }
        public override string ToString() { return this.Name; }

        /// <summary>
        /// Implcitly converts to string.
        /// </summary>
        /// <param name="d"></param>
        public static implicit operator string(ResponseStatusCode d)
        {
            return d.ToString();
        }

        /// <summary>
        /// Compares based on the == method. Handles nulls gracefully.
        /// </summary>
        /// <param name="a"></param>
        /// <param name="b"></param>
        /// <returns></returns>
        public static bool operator !=(ResponseStatusCode a, ResponseStatusCode b)
        {
            return !(a == b);
        }

        /// <summary>
        /// Compares based on the .Equals method. Handles nulls gracefully.
        /// </summary>
        /// <param name="a"></param>
        /// <param name="b"></param>
        /// <returns></returns>
        public static bool operator ==(ResponseStatusCode a, ResponseStatusCode b)
        {
            return a?.ToString() == b?.ToString();
        }

        /// <summary>
        /// Compares based on the .ToString() method
        /// </summary>
        /// <param name="o"></param>
        /// <returns></returns>
        public override bool Equals(object o)
        {
            return this.ToString() == o?.ToString();
        }

        /// <summary>
        /// Compares based on the .Name property
        /// </summary>
        /// <returns></returns>
        public override int GetHashCode()
        {
            return this.Name.GetHashCode();
        }
    }
}
Daly answered 6/9, 2018 at 17:35 Comment(0)
P
0

Use object Enum.Parse(System.Type enumType, string value, bool ignoreCase); got it from http://blogs.msdn.com/b/tims/archive/2004/04/02/106310.aspx

Panathenaea answered 18/8, 2011 at 19:29 Comment(2)
You should revise this answer to include an example not just a link.Pregnable
and read the question, same answer as above msdn.microsoft.com/en-us/library/system.enum.getname.aspxBuckeen
L
0

The approach i found for internationalization of Enums or getting text of Enums from respective Resource files is to create an attribute class by inheriting DescriptionAttribute class

public class EnumResourceAttribute : DescriptionAttribute
{

    public Type ResourceType { get; private set; }
    public string ResourceName { get; private set; }
    public int SortOrder { get; private set; }
    public EnumResourceAttribute(Type ResourceType,
                         string ResourceName,
                         int SortOrder)
    {

        this.ResourceType = ResourceType;
        this.ResourceName = ResourceName;
        this.SortOrder = SortOrder;
    }
}

Create another Static class that will provide extension methods for GetString and GetStrings.

public static class EnumHelper
{
    public static string GetString(this Enum value)
    {
        EnumResourceAttribute ea =
       (EnumResourceAttribute)value.GetType().GetField(value.ToString())
        .GetCustomAttributes(typeof(EnumResourceAttribute), false)
         .FirstOrDefault();
        if (ea != null)
        {
            PropertyInfo pi = ea.ResourceType
             .GetProperty(CommonConstants.ResourceManager);
            if (pi != null)
            {
                ResourceManager rm = (ResourceManager)pi
                .GetValue(null, null);
                return rm.GetString(ea.ResourceName);
            }

        }
        return string.Empty;
    }


    public static IList GetStrings(this Type enumType)
    {
        List<string> stringList = new List<string>();
        FieldInfo[] fiArray = enumType.GetFields();
        foreach (FieldInfo fi in fiArray)
        {
            EnumResourceAttribute ea =
                (EnumResourceAttribute)fi
                     .GetCustomAttributes(typeof(EnumResourceAttribute), false)
                     .FirstOrDefault();
            if (ea != null)
            {
                PropertyInfo pi = ea.ResourceType
                                    .GetProperty(CommonConstants.ResourceManager);
                if (pi != null)
                {
                    ResourceManager rm = (ResourceManager)pi
                                          .GetValue(null, null);
                    stringList.Add(rm.GetString(ea.ResourceName));
                }
            }
        }
        return stringList.ToList();
    }
}

And on the elements of your Enum you can write :

public enum Priority
{
     [EnumResourceAttribute(typeof(Resources.AdviceModule), Resources.ResourceNames.AdviceCreateAdviceExternaPriorityMemberHigh, 1)]
    High,
     [EnumResourceAttribute(typeof(Resources.AdviceModule), Resources.ResourceNames.AdviceCreateAdviceExternaPriorityMemberRoutine, 2)]
    Routine
}

Where Resources.ResourceNames.AdviceCreateAdviceExternaPriorityMemberHigh & Resources.ResourceNames.AdviceCreateAdviceExternaPriorityMemberRoutine are constants in the resource file or you can say the strings whose values can be available in different cultures.

If you are implementing your web application in MVC architecture then create a property

private IList result;
public IList Result
{
    get
    {
        result = typeof(Priority).GetStrings();
        return result;
    }
}

and in your .cshtml file you can just bind the enum to your dropdownlist like :

@Html.DropDownListFor(model => Model.vwClinicalInfo.Priority, new SelectList(Model.Result))

Thanks Ratnesh

Lorrielorrimer answered 27/9, 2011 at 10:19 Comment(0)
B
0

My answer, working on @user29964 's answer (which is by far the simplest and closest to a Enum) is

 public class StringValue : System.Attribute
    {
        private string _value;

        public StringValue(string value)
        {
            _value = value;
        }

        public string Value
        {
            get { return _value; }
        }



        public static string GetStringValue(Enum Flagvalue)
        {
            Type type = Flagvalue.GetType();
            string[] flags = Flagvalue.ToString().Split(',').Select(x => x.Trim()).ToArray();
            List<string> values = new List<string>();

            for (int i = 0; i < flags.Length; i++)
            {

                FieldInfo fi = type.GetField(flags[i].ToString());

                StringValue[] attrs =
                   fi.GetCustomAttributes(typeof(StringValue),
                                           false) as StringValue[];
                if (attrs.Length > 0)
                {
                    values.Add(attrs[0].Value);
                }
            }
            return String.Join(",", values);

        }

usage

[Flags]
    public enum CompeteMetric
    {

        /// <summary>
        /// u
        /// </summary>
        [StringValue("u")]//Json mapping
        Basic_UniqueVisitors = 1 //Basic
             ,
        /// <summary>
        /// vi
        /// </summary>
        [StringValue("vi")]//json mapping
        Basic_Visits = 2// Basic
            ,
        /// <summary>
        /// rank
        /// </summary>
        [StringValue("rank")]//json mapping
        Basic_Rank = 4//Basic
 }

Example

        CompeteMetric metrics = CompeteMetric.Basic_Visits | CompeteMetric.Basic_Rank;
        string strmetrics = StringValue.GetStringValue(metrics);

this will return "vi,rank"

Buckeen answered 7/5, 2012 at 15:1 Comment(0)
H
0

I'm with Harvey but don't use const. I can mix and match string, int, whatever.

public class xlsLayout
{
    public int xlHeaderRow = 1;
    public int xlFirstDataRow = 2;
    public int xlSkipLinesBetweenFiles = 1; //so 0 would mean don't skip
    public string xlFileColumn = "A";
    public string xlFieldColumn = "B";
    public string xlFreindlyNameColumn = "C";
    public string xlHelpTextColumn = "D";
}

Then later ...

public partial class Form1 : Form
{
    xlsLayout xlLayout = new xlsLayout();

    xl.SetCell(xlLayout.xlFileColumn, xlLayout.xlHeaderRow, "File Name");
    xl.SetCell(xlLayout.xlFieldColumn, xlLayout.xlHeaderRow, "Code field name");
    xl.SetCell(xlLayout.xlFreindlyNameColumn, xlLayout.xlHeaderRow, "Freindly name");
    xl.SetCell(xlLayout.xlHelpTextColumn, xlLayout.xlHeaderRow, "Inline Help Text");
}
Hornwort answered 24/1, 2014 at 15:57 Comment(1)
I use Harvey's as well, but I do use the const access modifier because it is a compile time value and I can thus use them in switch statements. Using your code can work for certain situations, but you cannot use your values in a switch.Calorimeter
I
0

I know pretty well that this question have already been answered and that the OP is already happy with the accepted answer. But I found most of the answers, including the accepted one, to be a little bit more complicated.

I have a project which gave me a situation like this and I was able to achieve it this way.

First, you have to consider the casing of your enum names:

public enum AuthenticationMethod
{
    Forms = 1,
    WindowsAuthentication = 2,
    SingleSignOn = 3
}

Then, have this extension:

using System.Text.RegularExpression;

public static class AnExtension
{
    public static string Name(this Enum value)
    {
        string strVal = value.ToString();
        try
        {
            return Regex.Replace(strVal, "([a-z])([A-Z])", "$1 $2");
        }
        catch
        {
        }
        return strVal;
    }
}

Through this you can turn your every enum name to its string representation with each word separated with a space. Ex:

AuthenticationMethod am = AuthenticationMethod.WindowsAuthentication;
MessageBox.Show(am.Name());
Insinuating answered 29/3, 2018 at 6:44 Comment(1)
If you read the original question, he wants different mapping, such as SingleSignOn to become SSO. Your solution does not work.Receptacle
H
0

You can declare enum and the dictionary in which the key will be the value of the enumeration. In the future, you can refer to the dictionary to get the value. Thus, it will be possible to pass parameters to functions as the type of enum, but to get the real value from the dictionary:

using System;
using System.Collections.Generic;

namespace console_test
{
    class Program
    {
        #region SaveFormat
        internal enum SaveFormat
        {
            DOCX,
            PDF
        }

        internal static Dictionary<SaveFormat,string> DictSaveFormat = new Dictionary<SaveFormat, string>
        {
            { SaveFormat.DOCX,"This is value for DOCX enum item" },
            { SaveFormat.PDF,"This is value for PDF enum item" }
        };

        internal static void enum_value_test(SaveFormat save_format)
        {
            Console.WriteLine(DictSaveFormat[save_format]);
        }
        #endregion

        internal static void Main(string[] args)
        {
            enum_value_test(SaveFormat.DOCX);//Output: This is value for DOCX enum item
            Console.Write("Press any key to continue . . . ");
            Console.ReadKey(true);
        }
    }
}
Horsetail answered 4/7, 2019 at 12:22 Comment(0)

© 2022 - 2024 — McMap. All rights reserved.