I'd also love to see the final solution you came up with to know how it shook out in the end.
One thing you can do to find the closest date might be something to calc the number of days between each date in the first DataFrame and the dates in the second DataFrame. Then you can use np.argmin
to retrieve the date with the smallest time delta.
For example:
Setup
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import numpy as np
import pandas as pd
from pandas.io.parsers import StringIO
Data
a = """timepoint,measure
2014-01-01 00:00:00,78
2014-01-02 00:00:00,29
2014-01-03 00:00:00,5
2014-01-04 00:00:00,73
2014-01-05 00:00:00,40
2014-01-06 00:00:00,45
2014-01-07 00:00:00,48
2014-01-08 00:00:00,2
2014-01-09 00:00:00,96
2014-01-10 00:00:00,82
2014-01-11 00:00:00,61
2014-01-12 00:00:00,68
2014-01-13 00:00:00,8
2014-01-14 00:00:00,94
2014-01-15 00:00:00,16
2014-01-16 00:00:00,31
2014-01-17 00:00:00,10
2014-01-18 00:00:00,34
2014-01-19 00:00:00,27
2014-01-20 00:00:00,58
2014-01-21 00:00:00,90
2014-01-22 00:00:00,41
2014-01-23 00:00:00,97
2014-01-24 00:00:00,7
2014-01-25 00:00:00,86
2014-01-26 00:00:00,62
2014-01-27 00:00:00,91
2014-01-28 00:00:00,0
2014-01-29 00:00:00,73
2014-01-30 00:00:00,22
2014-01-31 00:00:00,43
2014-02-01 00:00:00,87
2014-02-02 00:00:00,56
2014-02-03 00:00:00,45
2014-02-04 00:00:00,25
2014-02-05 00:00:00,92
2014-02-06 00:00:00,83
2014-02-07 00:00:00,13
2014-02-08 00:00:00,50
2014-02-09 00:00:00,48
2014-02-10 00:00:00,78"""
b = """timepoint,measure
2014-01-01 00:00:00,78
2014-01-08 00:00:00,29
2014-01-15 00:00:00,5
2014-01-22 00:00:00,73
2014-01-29 00:00:00,40
2014-02-05 00:00:00,45
2014-02-12 00:00:00,48
2014-02-19 00:00:00,2
2014-02-26 00:00:00,96
2014-03-05 00:00:00,82
2014-03-12 00:00:00,61
2014-03-19 00:00:00,68
2014-03-26 00:00:00,8
2014-04-02 00:00:00,94
"""
look at data
df1 = pd.read_csv(StringIO(a), parse_dates=['timepoint'])
df1.head()
timepoint measure
0 2014-01-01 78
1 2014-01-02 29
2 2014-01-03 5
3 2014-01-04 73
4 2014-01-05 40
df2 = pd.read_csv(StringIO(b), parse_dates=['timepoint'])
df2.head()
timepoint measure
0 2014-01-01 78
1 2014-01-08 29
2 2014-01-15 5
3 2014-01-22 73
4 2014-01-29 40
Func to find the closest date to a given date
def find_closest_date(timepoint, time_series, add_time_delta_column=True):
# takes a pd.Timestamp() instance and a pd.Series with dates in it
# calcs the delta between `timepoint` and each date in `time_series`
# returns the closest date and optionally the number of days in its time delta
deltas = np.abs(time_series - timepoint)
idx_closest_date = np.argmin(deltas)
res = {"closest_date": time_series.ix[idx_closest_date]}
idx = ['closest_date']
if add_time_delta_column:
res["closest_delta"] = deltas[idx_closest_date]
idx.append('closest_delta')
return pd.Series(res, index=idx)
df1[['closest', 'days_bt_x_and_y']] = df1.timepoint.apply(
find_closest_date, args=[df2.timepoint])
df1.head(10)
timepoint measure closest days_bt_x_and_y
0 2014-01-01 78 2014-01-01 0 days
1 2014-01-02 29 2014-01-01 1 days
2 2014-01-03 5 2014-01-01 2 days
3 2014-01-04 73 2014-01-01 3 days
4 2014-01-05 40 2014-01-08 3 days
5 2014-01-06 45 2014-01-08 2 days
6 2014-01-07 48 2014-01-08 1 days
7 2014-01-08 2 2014-01-08 0 days
8 2014-01-09 96 2014-01-08 1 days
9 2014-01-10 82 2014-01-08 2 days
Merge the two DataFrames on the new closest
date column
df3 = pd.merge(df1, df2, left_on=['closest'], right_on=['timepoint'])
colorder = [
'timepoint_x',
'closest',
'timepoint_y',
'days_bt_x_and_y',
'measure_x',
'measure_y'
]
df3 = df3.ix[:, colorder]
df3
timepoint_x closest timepoint_y days_bt_x_and_y measure_x measure_y
0 2014-01-01 2014-01-01 2014-01-01 0 days 78 78
1 2014-01-02 2014-01-01 2014-01-01 1 days 29 78
2 2014-01-03 2014-01-01 2014-01-01 2 days 5 78
3 2014-01-04 2014-01-01 2014-01-01 3 days 73 78
4 2014-01-05 2014-01-08 2014-01-08 3 days 40 29
5 2014-01-06 2014-01-08 2014-01-08 2 days 45 29
6 2014-01-07 2014-01-08 2014-01-08 1 days 48 29
7 2014-01-08 2014-01-08 2014-01-08 0 days 2 29
8 2014-01-09 2014-01-08 2014-01-08 1 days 96 29
9 2014-01-10 2014-01-08 2014-01-08 2 days 82 29
10 2014-01-11 2014-01-08 2014-01-08 3 days 61 29
11 2014-01-12 2014-01-15 2014-01-15 3 days 68 5
12 2014-01-13 2014-01-15 2014-01-15 2 days 8 5
13 2014-01-14 2014-01-15 2014-01-15 1 days 94 5
14 2014-01-15 2014-01-15 2014-01-15 0 days 16 5
15 2014-01-16 2014-01-15 2014-01-15 1 days 31 5
16 2014-01-17 2014-01-15 2014-01-15 2 days 10 5
17 2014-01-18 2014-01-15 2014-01-15 3 days 34 5
18 2014-01-19 2014-01-22 2014-01-22 3 days 27 73
19 2014-01-20 2014-01-22 2014-01-22 2 days 58 73
20 2014-01-21 2014-01-22 2014-01-22 1 days 90 73
21 2014-01-22 2014-01-22 2014-01-22 0 days 41 73
22 2014-01-23 2014-01-22 2014-01-22 1 days 97 73
23 2014-01-24 2014-01-22 2014-01-22 2 days 7 73
24 2014-01-25 2014-01-22 2014-01-22 3 days 86 73
25 2014-01-26 2014-01-29 2014-01-29 3 days 62 40
26 2014-01-27 2014-01-29 2014-01-29 2 days 91 40
27 2014-01-28 2014-01-29 2014-01-29 1 days 0 40
28 2014-01-29 2014-01-29 2014-01-29 0 days 73 40
29 2014-01-30 2014-01-29 2014-01-29 1 days 22 40
30 2014-01-31 2014-01-29 2014-01-29 2 days 43 40
31 2014-02-01 2014-01-29 2014-01-29 3 days 87 40
32 2014-02-02 2014-02-05 2014-02-05 3 days 56 45
33 2014-02-03 2014-02-05 2014-02-05 2 days 45 45
34 2014-02-04 2014-02-05 2014-02-05 1 days 25 45
35 2014-02-05 2014-02-05 2014-02-05 0 days 92 45
36 2014-02-06 2014-02-05 2014-02-05 1 days 83 45
37 2014-02-07 2014-02-05 2014-02-05 2 days 13 45
38 2014-02-08 2014-02-05 2014-02-05 3 days 50 45
39 2014-02-09 2014-02-12 2014-02-12 3 days 48 48
40 2014-02-10 2014-02-12 2014-02-12 2 days 78 48