I have generated three identical waves with a phase shift in each. For example:
t = 1:10800; % generate time vector
fs = 1; % sampling frequency (seconds)
A = 2; % amplitude
P = 1000; % period (seconds), the time it takes for the signal to repeat itself
f1 = 1/P; % number of cycles per second (i.e. how often the signal repeats itself every second).
y1 = A*sin(2*pi*f1*t); % signal 1
phi = 10; % phase shift
y2 = A*sin(2*pi*f1*t + phi); % signal 2
phi = 15; % phase shift
y3 = A*sin(2*pi*f1*t + phi); % signal 3
YY = [y1',y2',y3'];
plot(t,YY)
I would now like to use a method for detecting this phase shift between the waves. The point of doing this is so that I can eventually apply the method to real data and identify phase shifts between signals.
So far I have been thinking of computing the cross spectra between each wave and the first wave (i.e. without the phase shift):
for i = 1:3;
[Pxy,Freq] = cpsd(YY(:,1),YY(:,i));
coP = real(Pxy);
quadP = imag(Pxy);
phase(:,i) = atan2(coP,quadP);
end
but I'm not sure if this makes any sense.
Has anyone else done something similar to this? The desired outcome should show a phase shift at 10 and 15 for waves 2 and 3 respectively.
Any advice would be appreciated.