Setup
consider the numpy array a
a = np.arange(30).reshape(2, 3, 5)
print(a)
[[[ 0 1 2 3 4]
[ 5 6 7 8 9]
[10 11 12 13 14]]
[[15 16 17 18 19]
[20 21 22 23 24]
[25 26 27 28 29]]]
Where are the dimensions?
The dimensions and positions are highlighted by the following
p p p p p
o o o o o
s s s s s
dim 2 0 1 2 3 4
| | | | |
dim 0 ↓ ↓ ↓ ↓ ↓
----> [[[ 0 1 2 3 4] <---- dim 1, pos 0
pos 0 [ 5 6 7 8 9] <---- dim 1, pos 1
[10 11 12 13 14]] <---- dim 1, pos 2
dim 0
----> [[15 16 17 18 19] <---- dim 1, pos 0
pos 1 [20 21 22 23 24] <---- dim 1, pos 1
[25 26 27 28 29]]] <---- dim 1, pos 2
↑ ↑ ↑ ↑ ↑
| | | | |
dim 2 p p p p p
o o o o o
s s s s s
0 1 2 3 4
Dimension examples:
This becomes more clear with a few examples
a[0, :, :] # dim 0, pos 0
[[ 0 1 2 3 4]
[ 5 6 7 8 9]
[10 11 12 13 14]]
a[:, 1, :] # dim 1, pos 1
[[ 5 6 7 8 9]
[20 21 22 23 24]]
a[:, :, 3] # dim 2, pos 3
[[ 3 8 13]
[18 23 28]]
sum
explanation of sum
and axis
a.sum(0)
is the sum of all slices along dim 0
a.sum(0)
[[15 17 19 21 23]
[25 27 29 31 33]
[35 37 39 41 43]]
same as
a[0, :, :] + \
a[1, :, :]
[[15 17 19 21 23]
[25 27 29 31 33]
[35 37 39 41 43]]
a.sum(1)
is the sum of all slices along dim 1
a.sum(1)
[[15 18 21 24 27]
[60 63 66 69 72]]
same as
a[:, 0, :] + \
a[:, 1, :] + \
a[:, 2, :]
[[15 18 21 24 27]
[60 63 66 69 72]]
a.sum(2)
is the sum of all slices along dim 2
a.sum(2)
[[ 10 35 60]
[ 85 110 135]]
same as
a[:, :, 0] + \
a[:, :, 1] + \
a[:, :, 2] + \
a[:, :, 3] + \
a[:, :, 4]
[[ 10 35 60]
[ 85 110 135]]
default axis is -1
this means all axes. or sum all numbers.
a.sum()
435
for i in range...:
kind of expressions? – Wardell/your-python-installation/Lib/site-packages/numpy
folder contains all the answers to your questions...its a long-term study getting to know how numpy works...lot of times involves knowing python internals – Contumacysum
calculation is done in complex compiled code, so the Python code in the site-package directory won't help. – Wardell