Recommended way to track down array out-of-bound access/write in C program
Asked Answered
U

1

26

Consider writing implementation for some not-so-obvious algorithm in C. For example let it be recursive quicksort, that I have found in K. N. King's "C Programming: A Modern Approach, 2nd Edition" book, that it's available from here. The most interesting part consist of two following definitions:

void quicksort(int a[], int low, int high)
{
    int middle;

    if (low >= high)
        return;

    middle = split(a, low, high);
    quicksort(a, low, middle - 1);
    quicksort(a, middle + 1, high);
}

int split(int a[], int low, int high)
{
    int part_element = a[low];

    for (;;) {
       while (low < high && part_element <= a[high])
           high--;
       if (low >= high)
           break;
       a[low++] = a[high];

       while (low < high && a[low] <= part_element)
           low++;
       if (low >= high)
           break;
       a[high--] = a[low];
    }

    a[high] = part_element;
    return high;
}

Both while loops can be optimized by removing low < high tests:

for (;;) {
    while (part_element < a[high])
        high--;
    if (low >= high)
        break;
    a[low++] = a[high];
    a[high] = part_element;

    while (a[low] <= part_element)
        low++;
    if (low >= high)
        break;
    a[high--] = a[low];
    a[low] = part_element;
}

What is the recommended way to make sure that every access or write to array (allocated on stack) is actually valid (i.e. not provoking undefined behaviour) ? What I already tried is to:

  • manually debug with gdb on some actual data
  • pass source code to static analysis tools like split or cppcheck
  • valgrind with --tool=exp-sgcheck switch

For example having five elements array {8, 1, 2, 3, 4}:

#define N 5

int main(void)
{
    int a[N] = {8, 1, 2, 3, 4}, i;

    quicksort(a, 0, N - 1);

    printf("After sort:");
    for (i = 0; i < N; i++)
        printf(" %d", a[i]);
    putchar('\n');

    return 0;
}

Result is (most certainly it's implemention dependent):

After sort: 1 1 2 4 8

1. GDB

(gdb) p low
$1 = 3
(gdb) p high
$2 = 4
(gdb) p a[low]
$3 = 1
(gdb) p part_element
$4 = 8
(gdb) s
47              low++;
(gdb) s
46          while (a[low] <= part_element)
(gdb) s
47              low++;
(gdb) s
46          while (a[low] <= part_element)
(gdb) p low
$5 = 5
(gdb) p high
$6 = 4
(gdb) bt full
#0  split (a=0x7fffffffe140, low=5, high=4) at qsort.c:46
        part_element = 8
#1  0x00000000004005df in quicksort (a=0x7fffffffe140, low=0, high=4) at qsort.c:30
        middle = <value optimized out>
#2  0x0000000000400656 in main () at qsort.c:14
        a = {4, 1, 2, 1, 8}
        i = <value optimized out>

As you see low variable went outside boundary:

(gdb) p low
$5 = 5

2. Static analysis tools

$ splint -retvalint -exportlocal qsort.c 
Splint 3.1.2 --- 07 Feb 2011

Finished checking --- no warnings

$ cppcheck qsort.c 
Checking qsort.c...

3. Valgrind with --tool=exp-sgcheck

$ valgrind --tool=exp-sgcheck ./a.out 
==5480== exp-sgcheck, a stack and global array overrun detector
==5480== NOTE: This is an Experimental-Class Valgrind Tool
==5480== Copyright (C) 2003-2012, and GNU GPL'd, by OpenWorks Ltd et al.
==5480== Using Valgrind-3.8.1 and LibVEX; rerun with -h for copyright info
==5480== Command: ./a.out
==5480== 
==5480== Invalid read of size 4
==5480==    at 0x4005A0: split (qsort.c:46)
==5480==    by 0x4005DE: quicksort (qsort.c:30)
==5480==    by 0x400655: main (qsort.c:14)
==5480==  Address 0x7ff000114 expected vs actual:
==5480==  Expected: stack array "a" of size 20 in frame 2 back from here
==5480==  Actual:   unknown
==5480==  Actual:   is 0 after Expected
==5480== 
After sort: 1 1 2 4 8
==5480== 
==5480== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 0 from 0)

The location at 0x4005A0: split (qsort.c:46) is matching to the same place as I found by gdb manually.

Unhand answered 18/6, 2014 at 11:25 Comment(4)
I usually rely on valgrind for debugging memory issues.Therapeutic
electric fence (-lefence) can help with this tooPasto
Valgrind is extremely helpful with dynamic memory (I'm almost sure it guarantees that it will find every illegal memory operation here), but with stack it isn't so obvious. Still, I think it is the best tool available, although it wouldn't always find problem. gcc's -fstack-protector-all also sometimes help, at very little cost.Strum
Thanks keltar. I found in Valgrind's documentation that for stack arrays I need to use exp-sgcheck, which is still experimental. I know that C does not offer array bound checking, moreover after passing array to function sizeof information is lost, so it is not trivial to track it down. Beside that I thought that static code analysis tools could be useful here as well.Unhand
S
20

What is the recommended way to make sure that every access or write to array (allocated on stack) is actually valid (i.e. not provoking undefined behaviour) ?

What if use clang on Linux with the options -fsanitize=addressand -fsanitize=undefined? It is also available in gcc: http://gcc.gnu.org/gcc-4.8/changes.html.


clang with the option -fsanitize=undefined

This is an example:

#include <stdlib.h>

#define N 5

int main(int argc, char *argv[])
{
  int a[N] = {8, 1, 2, 3, 4}, i;

  int r =0;
  int end = atoi(argv[1]);
  for (int i = 0; i != end; ++i)
    r += a[i];

  return r;
}

Then

clang -fno-omit-frame-pointer -fsanitize=undefined -g out_boundary.c -o out_boundary_clang

$ ./out_boundary_clang 5
$ ./out_boundary_clang 6
out_boundary.c:12:10: runtime error: index 5 out of bounds for type 'int [5]'
Illegal instruction (core dumped)

And then analyze a core file

Program terminated with signal 4, Illegal instruction.
#0  main (argc=2, argv=0x7fff3a1c28c8) at out_boundary.c:12
12          r += a[i];
(gdb) p i
$1 = 5


clang with the option -fsanitize=address

This is a quote:

The tool can detect the following types of bugs:

* Out-of-bounds accesses to heap, stack and globals
* Use-after-free
* Use-after-return (to some extent)
* Double-free, invalid free
* Memory leaks (experimental)

clang -fno-omit-frame-pointer -fsanitize=address -g out_boundary.c -o out_boundary_clang

And then:

$ ./out_boundary_clang 6 2>&1 | asan_symbolize.py
=================================================================
==9634==ERROR: AddressSanitizer: stack-buffer-overflow on address 0x7fff91bb2ad4 at pc 0x459c67 bp 0x7fff91bb2910 sp 0x7fff91bb2908
READ of size 4 at 0x7fff91bb2ad4 thread T0
    #0 0x459c66 in main out_boundary.c:12
    #1 0x3a1d81ed1c in __libc_start_main ??:0
    #2 0x4594ac in _start ??:0
Address 0x7fff91bb2ad4 is located in stack of thread T0 at offset 244 in frame
    #0 0x45957f in main out_boundary.c:6
  This frame has 8 object(s):
    [32, 36) ''
    [96, 100) ''
    [160, 168) ''
    [224, 244) 'a'
    [288, 292) 'i'
    [352, 356) 'r'
    [416, 420) 'end'
    [480, 484) 'i1'
HINT: this may be a false positive if your program uses some custom stack unwind mechanism or swapcontext
      (longjmp and C++ exceptions *are* supported)
Shadow bytes around the buggy address:
  0x10007236e500: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
  0x10007236e510: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
  0x10007236e520: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
  0x10007236e530: 00 00 00 00 00 00 00 00 00 00 00 00 f1 f1 f1 f1
  0x10007236e540: 04 f4 f4 f4 f2 f2 f2 f2 04 f4 f4 f4 f2 f2 f2 f2
=>0x10007236e550: 00 f4 f4 f4 f2 f2 f2 f2 00 00[04]f4 f2 f2 f2 f2
  0x10007236e560: 04 f4 f4 f4 f2 f2 f2 f2 04 f4 f4 f4 f2 f2 f2 f2
  0x10007236e570: 04 f4 f4 f4 f2 f2 f2 f2 04 f4 f4 f4 f3 f3 f3 f3
  0x10007236e580: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
  0x10007236e590: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
  0x10007236e5a0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Shadow byte legend (one shadow byte represents 8 application bytes):
  Addressable:           00
  Partially addressable: 01 02 03 04 05 06 07
  Heap left redzone:     fa
  Heap right redzone:    fb
  Freed heap region:     fd
  Stack left redzone:    f1
  Stack mid redzone:     f2
  Stack right redzone:   f3
  Stack partial redzone: f4
  Stack after return:    f5
  Stack use after scope: f8
  Global redzone:        f9
  Global init order:     f6
  Poisoned by user:      f7
  ASan internal:         fe
==9634==ABORTING

Or you can use both this options. Useful links:

Salimeter answered 18/6, 2014 at 14:13 Comment(3)
@skwllsp : -fsanitize=addressand-fsanitize=undefinedisn’t enabled on cygwin which use gcc 5.2.0 as time of writing. And it can’t be enabled as I don’t know were to download and compile libasan and libusan.Bicipital
Note with gcc you have to link with libasan, e.g., gcc -fsanitize=address myprog.c -o myprog -lasanHeilner
To add to @Heilner it is the same for g++, e.g., g++ -fsanitize=address myprog.c -o myprog -lasan. It is also compatible with gdb.Rectum

© 2022 - 2024 — McMap. All rights reserved.