Assuming these IDs are prepared according to a standard template having specific widths, heights, offsets, spacing etc., you can try a template based approach.
MRZ would be easy to detect. Once you detect it in the image, find the transformation that maps the MRZ in your template to it. When you know this transformation you can map any region on your template (for example, the photo of the individual) to the image and extract that region.
Below is a very simple program that follows a happy path. You will have to do more processing to locate the MRZ in general (for example, if there are perspective distortions or rotations). I prepared the template just by measuring the image, and it won't work for your case. I just wanted to convey the idea. Image was taken from wiki
Mat rgb = imread(INPUT_FILE);
Mat gray;
cvtColor(rgb, gray, CV_BGR2GRAY);
Mat grad;
Mat morphKernel = getStructuringElement(MORPH_ELLIPSE, Size(3, 3));
morphologyEx(gray, grad, MORPH_GRADIENT, morphKernel);
Mat bw;
threshold(grad, bw, 0.0, 255.0, THRESH_BINARY | THRESH_OTSU);
// connect horizontally oriented regions
Mat connected;
morphKernel = getStructuringElement(MORPH_RECT, Size(9, 1));
morphologyEx(bw, connected, MORPH_CLOSE, morphKernel);
// find contours
Mat mask = Mat::zeros(bw.size(), CV_8UC1);
vector<vector<Point>> contours;
vector<Vec4i> hierarchy;
findContours(connected, contours, hierarchy, CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE, Point(0, 0));
vector<Rect> mrz;
double r = 0;
// filter contours
for(int idx = 0; idx >= 0; idx = hierarchy[idx][0])
{
Rect rect = boundingRect(contours[idx]);
r = rect.height ? (double)(rect.width/rect.height) : 0;
if ((rect.width > connected.cols * .7) && /* filter from rect width */
(r > 25) && /* filter from width:hight ratio */
(r < 36) /* filter from width:hight ratio */
)
{
mrz.push_back(rect);
rectangle(rgb, rect, Scalar(0, 255, 0), 1);
}
else
{
rectangle(rgb, rect, Scalar(0, 0, 255), 1);
}
}
if (2 == mrz.size())
{
// just assume we have found the two data strips in MRZ and combine them
CvRect max = cvMaxRect(&(CvRect)mrz[0], &(CvRect)mrz[1]);
rectangle(rgb, max, Scalar(255, 0, 0), 2); // draw the MRZ
vector<Point2f> mrzSrc;
vector<Point2f> mrzDst;
// MRZ region in our image
mrzDst.push_back(Point2f((float)max.x, (float)max.y));
mrzDst.push_back(Point2f((float)(max.x+max.width), (float)max.y));
mrzDst.push_back(Point2f((float)(max.x+max.width), (float)(max.y+max.height)));
mrzDst.push_back(Point2f((float)max.x, (float)(max.y+max.height)));
// MRZ in our template
mrzSrc.push_back(Point2f(0.23f, 9.3f));
mrzSrc.push_back(Point2f(18.0f, 9.3f));
mrzSrc.push_back(Point2f(18.0f, 10.9f));
mrzSrc.push_back(Point2f(0.23f, 10.9f));
// find the transformation
Mat t = getPerspectiveTransform(mrzSrc, mrzDst);
// photo region in our template
vector<Point2f> photoSrc;
photoSrc.push_back(Point2f(0.0f, 0.0f));
photoSrc.push_back(Point2f(5.66f, 0.0f));
photoSrc.push_back(Point2f(5.66f, 7.16f));
photoSrc.push_back(Point2f(0.0f, 7.16f));
// surname region in our template
vector<Point2f> surnameSrc;
surnameSrc.push_back(Point2f(6.4f, 0.7f));
surnameSrc.push_back(Point2f(8.96f, 0.7f));
surnameSrc.push_back(Point2f(8.96f, 1.2f));
surnameSrc.push_back(Point2f(6.4f, 1.2f));
vector<Point2f> photoDst(4);
vector<Point2f> surnameDst(4);
// map the regions from our template to image
perspectiveTransform(photoSrc, photoDst, t);
perspectiveTransform(surnameSrc, surnameDst, t);
// draw the mapped regions
for (int i = 0; i < 4; i++)
{
line(rgb, photoDst[i], photoDst[(i+1)%4], Scalar(0,128,255), 2);
}
for (int i = 0; i < 4; i++)
{
line(rgb, surnameDst[i], surnameDst[(i+1)%4], Scalar(0,128,255), 2);
}
}
Result: photo and surname regions in orange. MRZ in blue.