I want to upgrade my evolution simulator to use Hebb learning, like this one. I basically want small creatures to be able to learn how to find food. I achieved that with the basic feedforward networks, but I'm stuck at understanding how to do it with Hebb learning. The basic principle of Hebb learning is that, if two neurons fire together, they wire together.
So, the weights are updated like this:
weight_change = learning_rate * input * output
The information I've found on how this can be useful is pretty scarce, and I don't get it.
In my current version of the simulator, the weights between an action and an input (movement, eyes) are increased when a creature eats a piece of food, and I fail to see how that can translate into this new model. There simply is no room to tell if it did something right or wrong here, because the only parameters are input and output! Basically, if one input activates movement in one direction, the weight would just keep on increasing, no matter if the creature is eating something or not!
Am I applying Hebb learning in a wrong way? Just for reference, I'm using Python.