I have the following problem and was thinking I could use machine learning but I'm not completely certain it will work for my use case.
I have a data set of around a hundred million records containing customer data including names, addresses, emails, phones, etc and would like to find a way to clean this customer data and identify possible duplicates in the data set.
Most of the data has been manually entered using an external system with no validation so a lot of our customers have ended up with more than one profile in our DB, sometimes with different data in each record.
For Instance We might have 5 different entries for a customer John Doe, each with different contact details.
We also have the case where multiple records that represent different customers match on key fields like email. For instance when a customer doesn't have an email address but the data entry system requires it our consultants will use a random email address, resulting in many different customer profiles using the same email address, same applies for phones, addresses etc.
All of our data is indexed in Elasticsearch and stored in a SQL Server Database. My first thought was to use Mahout as a machine learning platform (since this is a Java shop) and maybe use H-base to store our data (just because it fits with the Hadoop Ecosystem, not sure if it will be of any real value), but the more I read about it the more confused I am as to how it would work in my case, for starters I'm not sure what kind of algorithm I could use since I'm not sure where this problem falls into, can I use a Clustering algorithm or a Classification algorithm? and of course certain rules will have to be used as to what constitutes a profile's uniqueness, i.e what fields.
The idea is to have this deployed initially as a Customer Profile de-duplicator service of sorts that our data entry systems can use to validate and detect possible duplicates when entering a new customer profile and in the future perhaps develop this into an analytics platform to gather insight about our customers.
Any feedback will be greatly appreciated :)
Thanks.
sometimes with different data in each record.
, so how should a machine learning algorithm find duplicates? Also how do you know if John Doe is the same person if he was added with nearly the same data? IMHO you are throwing buzzwords arround and all you need is a tight relational model in your customer database. – Seneca