I have used both OpenCV and dlib extensively for face detection and face recognition and dlib is much accurate as compared to OpenCV Haar based face detector. ( Note that OpenCV now has a DNN module where we get Deep Learning based Face Detector and Face Recognizer models. )
I'm in the middle of comparing the OpenCV-DNN vs Dlib for face detection / recognition. Will post the results once I'm done with it.
There are many useful functions available in dlib, but I prefer OpenCV for any other CV tasks.
EDIT : As promised, I have made a detailed comparison of OpenCV vs Dlib Face Detection methods.
Here is my conclusion :
General Case
In most applications, we won’t know the size of the face in the image before-hand. Thus, it is better to use OpenCV – DNN method as it is pretty fast and very accurate, even for small sized faces. It also detects faces at various angles. We recommend to use OpenCV-DNN in most
For medium to large image sizes
Dlib HoG is the fastest method on CPU. But it does not detect small sized faces ( < 70x70 ). So, if you know that your application will not be dealing with very small sized faces ( for example a selfie app ), then HoG based Face detector is a better option. Also, If you can use a GPU, then MMOD face detector is the best option as it is very fast on GPU and also provides detection at various angles.
For more details, you can have a look at this blog
OpenCV
in identifying faces from images of decent resolution and I seem to be getting false positives over a small sample size of images (using all 4 available face recognition Haar Cascade xmls). I'm about to testdlib
next as it should be better in recognizing faces via machine learning. – Wept