I am working on a language that is compiled with LLVM. Just for fun, I wanted to do some microbenchmarks. In one, I run some million sin / cos computations in a loop. In pseudocode, it looks like this:
var x: Double = 0.0
for (i <- 0 to 100 000 000)
x = sin(x)^2 + cos(x)^2
return x.toInteger
If I'm computing sin/cos using LLVM IR inline assembly in the form:
%sc = call { double, double } asm "fsincos", "={st(1)},={st},1,~{dirflag},~{fpsr},~{flags}" (double %"res") nounwind
this is faster than using fsin and fcos separately instead of fsincos. However, it is slower than if I calling the llvm.sin.f64
and llvm.cos.f64
intrinsics separately, which compile to calls to the C math lib functions, at least with the target settings I'm using (x86_64 with SSE enabled).
It seems LLVM inserts some conversions between single/double precision FP -- that might be the culprit. Why is that? Sorry, I'm a relative newbie at assembly:
.globl main
.align 16, 0x90
.type main,@function
main: # @main
.cfi_startproc
# BB#0: # %loopEntry1
xorps %xmm0, %xmm0
movl $-1, %eax
jmp .LBB44_1
.align 16, 0x90
.LBB44_2: # %then4
# in Loop: Header=BB44_1 Depth=1
movss %xmm0, -4(%rsp)
flds -4(%rsp)
#APP
fsincos
#NO_APP
fstpl -16(%rsp)
fstpl -24(%rsp)
movsd -16(%rsp), %xmm0
mulsd %xmm0, %xmm0
cvtsd2ss %xmm0, %xmm1
movsd -24(%rsp), %xmm0
mulsd %xmm0, %xmm0
cvtsd2ss %xmm0, %xmm0
addss %xmm1, %xmm0
.LBB44_1: # %loop2
# =>This Inner Loop Header: Depth=1
incl %eax
cmpl $99999999, %eax # imm = 0x5F5E0FF
jle .LBB44_2
# BB#3: # %break3
cvttss2si %xmm0, %eax
ret
.Ltmp160:
.size main, .Ltmp160-main
.cfi_endproc
Same test with calls to llvm sin/cos intrinsics:
.globl main
.align 16, 0x90
.type main,@function
main: # @main
.cfi_startproc
# BB#0: # %loopEntry1
pushq %rbx
.Ltmp162:
.cfi_def_cfa_offset 16
subq $16, %rsp
.Ltmp163:
.cfi_def_cfa_offset 32
.Ltmp164:
.cfi_offset %rbx, -16
xorps %xmm0, %xmm0
movl $-1, %ebx
jmp .LBB44_1
.align 16, 0x90
.LBB44_2: # %then4
# in Loop: Header=BB44_1 Depth=1
movsd %xmm0, (%rsp) # 8-byte Spill
callq cos
mulsd %xmm0, %xmm0
movsd %xmm0, 8(%rsp) # 8-byte Spill
movsd (%rsp), %xmm0 # 8-byte Reload
callq sin
mulsd %xmm0, %xmm0
addsd 8(%rsp), %xmm0 # 8-byte Folded Reload
.LBB44_1: # %loop2
# =>This Inner Loop Header: Depth=1
incl %ebx
cmpl $99999999, %ebx # imm = 0x5F5E0FF
jle .LBB44_2
# BB#3: # %break3
cvttsd2si %xmm0, %eax
addq $16, %rsp
popq %rbx
ret
.Ltmp165:
.size main, .Ltmp165-main
.cfi_endproc
Can you suggest how the ideal assembly would look like with fsincos? PS. Adding -enable-unsafe-fp-math to llc makes the conversions disappear and switches to doubles (fldl etc.), but the speed remains the same.
.globl main
.align 16, 0x90
.type main,@function
main: # @main
.cfi_startproc
# BB#0: # %loopEntry1
xorps %xmm0, %xmm0
movl $-1, %eax
jmp .LBB44_1
.align 16, 0x90
.LBB44_2: # %then4
# in Loop: Header=BB44_1 Depth=1
movsd %xmm0, -8(%rsp)
fldl -8(%rsp)
#APP
fsincos
#NO_APP
fstpl -24(%rsp)
fstpl -16(%rsp)
movsd -24(%rsp), %xmm1
mulsd %xmm1, %xmm1
movsd -16(%rsp), %xmm0
mulsd %xmm0, %xmm0
addsd %xmm1, %xmm0
.LBB44_1: # %loop2
# =>This Inner Loop Header: Depth=1
incl %eax
cmpl $99999999, %eax # imm = 0x5F5E0FF
jle .LBB44_2
# BB#3: # %break3
cvttsd2si %xmm0, %eax
ret
.Ltmp160:
.size main, .Ltmp160-main
.cfi_endproc
cvtsd2ss
is a conversion from double to float. But stay away from legacy coprocessor instructions, they are slower and more imprecise than library routines nowadays. See for instance gcc.gnu.org/ml/gcc/2012-02/msg00188.html – Trucfsincos
uses. – Truc