Can anyone give me a practicale example of a recurrent neural network in (pybrain) python in order to predict the next value of a sequence ? (I've read the pybrain documentation and there is no clear example for it I think.) I also found this question. But I fail to see how it works in a more general case. So therefore I'm asking if anyone here could work out a clear example of how to predict the next value of a sequence in pybrain, with a recurrent neural network.
To give an example.
Say for example we have a sequence of numbers in the range [1,7].
First run (So first example): 1 2 4 6 2 3 4 5 1 3 5 6 7 1 4 7 1 2 3 5 6
Second run (So second example): 1 2 5 6 2 4 4 5 1 2 5 6 7 1 4 6 1 2 3 3 6
Third run (So third example): 1 3 5 7 2 4 6 7 1 3 5 6 7 1 4 6 1 2 2 3 7
and so on.
Now given for example the start of a new sequence: 1 3 5 7 2 4 6 7 1 3
what is/are the next value(s)
This question might seem lazy, but I think there lacks a good and decent example of how to do this with pybrain.
Additionally: How can this be done if more than 1 feature is present:
Example:
Say for example we have several sequences (each sequence having 2 features) in the range [1,7].
First run (So first example): feature1: 1 2 4 6 2 3 4 5 1 3 5 6 7 1 4 7 1 2 3 5 6
feature2: 1 3 5 7 2 4 6 7 1 3 5 6 7 1 4 6 1 2 2 3 7
Second run (So second example): feature1: 1 2 5 6 2 4 4 5 1 2 5 6 7 1 4 6 1 2 3 3 6
feature2: 1 2 3 7 2 3 4 6 2 3 5 6 7 2 4 7 1 3 3 5 6
Third run (So third example): feature1: 1 3 5 7 2 4 6 7 1 3 5 6 7 1 4 6 1 2 2 3 7
feature2: 1 2 4 6 2 3 4 5 1 3 5 6 7 1 4 7 1 2 3 5 6
and so on.
Now given for example the start of a new sequences:
feature 1: 1 3 5 7 2 4 6 7 1 3
feature 2: 1 2 3 7 2 3 4 6 2 4
what is/are the next value(s)
Feel free to use your own example as long it is similar to these examples and has some in depth explanation.