In short, there are two options:
- Change code to be asynchronous (
acceptor::async_accept()
and async_read
), run within the event loop via io_service::run()
, and cancel via io_service::stop()
.
- Force blocking calls to interrupt with lower level mechanics, such as signals.
I would recommend the first option, as it is more likely to be the portable and easier to maintain. The important concept to understand is that the io_service::run()
only blocks as long as there is pending work. When io_service::stop()
is invoked, it will try to cause all threads blocked on io_service::run()
to return as soon as possible; it will not interrupt synchronous operations, such as acceptor::accept()
and socket::receive()
, even if the synchronous operations are invoked within the event loop. It is important to note that io_service::stop()
is a non-blocking call, so synchronization with threads that were blocked on io_service::run()
must use another mechanic, such as thread::join()
.
Here is an example that will run for 10 seconds and listens to port 8080:
#include <boost/asio.hpp>
#include <boost/bind.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/thread.hpp>
#include <iostream>
void StartAccept( boost::asio::ip::tcp::acceptor& );
void ServerThreadFunc( boost::asio::io_service& io_service )
{
using boost::asio::ip::tcp;
tcp::acceptor acceptor( io_service, tcp::endpoint( tcp::v4(), 8080 ) );
// Add a job to start accepting connections.
StartAccept( acceptor );
// Process event loop.
io_service.run();
std::cout << "Server thread exiting." << std::endl;
}
void HandleAccept( const boost::system::error_code& error,
boost::shared_ptr< boost::asio::ip::tcp::socket > socket,
boost::asio::ip::tcp::acceptor& acceptor )
{
// If there was an error, then do not add any more jobs to the service.
if ( error )
{
std::cout << "Error accepting connection: " << error.message()
<< std::endl;
return;
}
// Otherwise, the socket is good to use.
std::cout << "Doing things with socket..." << std::endl;
// Perform async operations on the socket.
// Done using the socket, so start accepting another connection. This
// will add a job to the service, preventing io_service::run() from
// returning.
std::cout << "Done using socket, ready for another connection."
<< std::endl;
StartAccept( acceptor );
};
void StartAccept( boost::asio::ip::tcp::acceptor& acceptor )
{
using boost::asio::ip::tcp;
boost::shared_ptr< tcp::socket > socket(
new tcp::socket( acceptor.get_io_service() ) );
// Add an accept call to the service. This will prevent io_service::run()
// from returning.
std::cout << "Waiting on connection" << std::endl;
acceptor.async_accept( *socket,
boost::bind( HandleAccept,
boost::asio::placeholders::error,
socket,
boost::ref( acceptor ) ) );
}
int main()
{
using boost::asio::ip::tcp;
// Create io service.
boost::asio::io_service io_service;
// Create server thread that will start accepting connections.
boost::thread server_thread( ServerThreadFunc, boost::ref( io_service ) );
// Sleep for 10 seconds, then shutdown the server.
std::cout << "Stopping service in 10 seconds..." << std::endl;
boost::this_thread::sleep( boost::posix_time::seconds( 10 ) );
std::cout << "Stopping service now!" << std::endl;
// Stopping the io_service is a non-blocking call. The threads that are
// blocked on io_service::run() will try to return as soon as possible, but
// they may still be in the middle of a handler. Thus, perform a join on
// the server thread to guarantee a block occurs.
io_service.stop();
std::cout << "Waiting on server thread..." << std::endl;
server_thread.join();
std::cout << "Done waiting on server thread." << std::endl;
return 0;
}
While running, I opened two connections. Here is the output:
Stopping service in 10 seconds...
Waiting on connection
Doing things with socket...
Done using socket, ready for another connection.
Waiting on connection
Doing things with socket...
Done using socket, ready for another connection.
Waiting on connection
Stopping service now!
Waiting on server thread...
Server thread exiting.
Done waiting on server thread.
io_service::stop
, it can be called from another thread. – Leupold