I think you are on the right track with coeftest
in package lmtest. Take a look at the sandwich package which includes this functionality and is designed to work hand in hand with the lmtest package you have already found.
> # generate linear regression relationship
> # with Homoskedastic variances
> x <- sin(1:100)
> y <- 1 + x + rnorm(100)
> ## model fit and HC3 covariance
> fm <- lm(y ~ x)
> vcovHC(fm)
(Intercept) x
(Intercept) 0.010809366 0.001209603
x 0.001209603 0.018353076
> coeftest(fm, vcov. = vcovHC)
t test of coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.01973 0.10397 9.8081 3.159e-16 ***
x 0.93992 0.13547 6.9381 4.313e-10 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
To get the F test, look at function waldtest()
:
> waldtest(fm, vcov = vcovHC)
Wald test
Model 1: y ~ x
Model 2: y ~ 1
Res.Df Df F Pr(>F)
1 98
2 99 -1 48.137 4.313e-10 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
You could always cook up a simple function to combine these two for you if you wanted the one-liner...
There are lots of examples in the Econometric Computing with HC and HAC Covariance Matrix Estimators vignette that comes with the sandwich package of linking lmtest and sandwich to do what you want.
Edit: A one-liner could be as simple as:
mySummary <- function(model, VCOV) {
print(coeftest(model, vcov. = VCOV))
print(waldtest(model, vcov = VCOV))
}
Which we can use like this (on the examples from above):
> mySummary(fm, vcovHC)
t test of coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.01973 0.10397 9.8081 3.159e-16 ***
x 0.93992 0.13547 6.9381 4.313e-10 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Wald test
Model 1: y ~ x
Model 2: y ~ 1
Res.Df Df F Pr(>F)
1 98
2 99 -1 48.137 4.313e-10 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
hccm()
. It took me a few minutes to work out where that was coming from. – Lilienthal