user11228628's answer led me to understanding. Here's a few insights I had while reading it, and some step-by-step transformations.
Insights
- The continuations don't directly cancel out. They can only eventually be canceled (by beta-reducing) because it's possible to factor them out.
- The pattern you're looking for to do this transformation is
\k c -> k (c . f)
(or if you love unreadable pointfree, (. (. f))
) for any f
(note that the f
isn't a parameter to the lambda).
- As duplode points out in a comment, continuation-passing style functions can be considered a functor, and
obfuscate
is their definition of fmap
.
- The trick of pulling a function like this out of
foldr
works for any function that could be a valid fmap
.
Full transformation from the first code block to the second
zipRev xs ys = foldr f id xs snd (ys,[])
where
f x k c = k (\((y:ys),r) -> c (ys,(x,y):r))
Pull c
out of the lambda
zipRev xs ys = foldr f id xs snd (ys,[])
where
f x k c = k (c . \((y:ys),r) -> (ys,(x,y):r))
Substitute obfuscate
for its definition
zipRev xs ys = foldr f id xs snd (ys,[])
where
f x = obfuscate (\((y:ys),r) -> (ys,(x,y):r))
Pull obfuscate
out of the lambda
zipRev xs ys = foldr f id xs snd (ys,[])
where
f = obfuscate . \x ((y:ys),r) -> (ys,(x,y):r)
Pull obfuscate
out of f
zipRev xs ys = foldr (obfuscate . f) id xs snd (ys,[])
where
f x ((y:ys),r) = (ys,(x,y):r)
Since obfuscate
follows the Functor laws, we can pull it out of foldr
zipRev xs ys = obfuscate (flip (foldr f) xs) id snd (ys,[])
where
f x ((y:ys),r) = (ys,(x,y):r)
Inline obfuscate
zipRev xs ys = (\k c -> k (c . flip (foldr f) xs)) id snd (ys,[])
where
f x ((y:ys),r) = (ys,(x,y):r)
Beta-reduce
zipRev xs ys = (id (snd . flip (foldr f) xs)) (ys,[])
where
f x ((y:ys),r) = (ys,(x,y):r)
Simplify
zipRev xs ys = snd (foldr f (ys,[]) xs)
where
f x (y:ys,r) = (ys,(x,y):r)
Justification for pulling functions that are valid fmap
s out of foldr
foldr (fmap . f) z [x1,x2,...,xn]
Expand the foldr
(fmap . f) x1 . (fmap . f) x2 . ... . (fmap . f) xn $ z
Inline the inner .
s
fmap (f x1) . fmap (f x2) . ... . fmap (f xn) $ z
Apply the Functor laws
fmap (f x1 . f x2 . ... . f xn) $ z
Eta-expand the section in parentheses
fmap (\z2 -> f x1 . f x2 . ... . f xn $ z2) z
Write the lambda body in terms of foldr
fmap (\z2 -> foldr f z2 [x1,x2,...,xn]) z
Write the lambda body in terms of flip
fmap (flip (foldr f) [x1,x2,...,xn]) z
Bonus: Justification for pulling functions that are valid contramap
s out of foldr
foldr (contramap . f) z [x1,x2,...,xn]
Expand the foldr
(contramap . f) x1 . (contramap . f) x2 . ... . (contramap . f) xn $ z
Inline the inner .
s
contramap (f x1) . contramap (f x2) . ... . contramap (f xn) $ z
Apply the Contravariant laws
contramap (f xn . ... . f x2 . f x1) $ z
Eta-expand the section in parentheses
contramap (\z2 -> f xn . ... . f x2 . f x1 $ z2) z
Write the lambda body in terms of foldr
contramap (\z2 -> foldr f z2 [xn,...,x2,x1]) z
Write the lambda body in terms of flip
contramap (flip (foldr f) [xn,...,x2,x1]) z
Apply foldr f z (reverse xs)
= foldl (flip f) z xs
contramap (flip (foldl (flip f)) [x1,x2,...,xn]) z
zipRev
fail if the second list is shorter than the first. I believe the laziest possible version that works regardless of relative lengths is this one I just put together. – Salade