I am trying to run grangercausalitytests
on two time series:
import numpy as np
import pandas as pd
from statsmodels.tsa.stattools import grangercausalitytests
n = 1000
ls = np.linspace(0, 2*np.pi, n)
df1 = pd.DataFrame(np.sin(ls))
df2 = pd.DataFrame(2*np.sin(1+ls))
df = pd.concat([df1, df2], axis=1)
df.plot()
grangercausalitytests(df, maxlag=20)
However, I am getting
Granger Causality
number of lags (no zero) 1
ssr based F test: F=272078066917221398041264652288.0000, p=0.0000 , df_denom=996, df_num=1
ssr based chi2 test: chi2=272897579166972095424217743360.0000, p=0.0000 , df=1
likelihood ratio test: chi2=60811.2671, p=0.0000 , df=1
parameter F test: F=272078066917220553616334520320.0000, p=0.0000 , df_denom=996, df_num=1
Granger Causality
number of lags (no zero) 2
ssr based F test: F=7296.6976, p=0.0000 , df_denom=995, df_num=2
ssr based chi2 test: chi2=14637.3954, p=0.0000 , df=2
likelihood ratio test: chi2=2746.0362, p=0.0000 , df=2
parameter F test: F=13296850090491009488285469769728.0000, p=0.0000 , df_denom=995, df_num=2
...
/usr/local/lib/python3.5/dist-packages/numpy/linalg/linalg.py in _raise_linalgerror_singular(err, flag)
88
89 def _raise_linalgerror_singular(err, flag):
---> 90 raise LinAlgError("Singular matrix")
91
92 def _raise_linalgerror_nonposdef(err, flag):
LinAlgError: Singular matrix
and I am not sure why this is the case.