How can I write a stable implementation of the Quicksort algorithm in JavaScript?
You can easily "stabilize" an unstable sort using a decorate-sort-undecorate pattern
function stableSort(v, f)
{
if (f === undefined) {
f = function(a, b) {
a = ""+a; b = ""+b;
return a < b ? -1 : (a > b ? 1 : 0);
}
}
var dv = [];
for (var i=0; i<v.length; i++) {
dv[i] = [v[i], i];
}
dv.sort(function(a, b){
return f(a[0], b[0]) || (a[1] - b[1]);
});
for (var i=0; i<v.length; i++) {
v[i] = dv[i][0];
}
}
the idea is to add the index as last sorting term so that no two elements are now "the same" and if everything else is the same the original index will be the discriminating factor.
i
separately. –
Teacart Quicksort (recursive)
function quicksort(array) {
if (array.length <= 1) {
return array;
}
var pivot = array[0];
var left = [];
var right = [];
for (var i = 1; i < array.length; i++) {
array[i] < pivot ? left.push(array[i]) : right.push(array[i]);
}
return quicksort(left).concat(pivot, quicksort(right));
};
var unsorted = [23, 45, 16, 37, 3, 99, 22];
var sorted = quicksort(unsorted);
console.log('Sorted array', sorted);
You can easily "stabilize" an unstable sort using a decorate-sort-undecorate pattern
function stableSort(v, f)
{
if (f === undefined) {
f = function(a, b) {
a = ""+a; b = ""+b;
return a < b ? -1 : (a > b ? 1 : 0);
}
}
var dv = [];
for (var i=0; i<v.length; i++) {
dv[i] = [v[i], i];
}
dv.sort(function(a, b){
return f(a[0], b[0]) || (a[1] - b[1]);
});
for (var i=0; i<v.length; i++) {
v[i] = dv[i][0];
}
}
the idea is to add the index as last sorting term so that no two elements are now "the same" and if everything else is the same the original index will be the discriminating factor.
i
separately. –
Teacart - Put your objects into an array.
Call
Array.sort()
. It's very fast.var array = [3,7,2,8,2,782,7,29,1,3,0,34]; array.sort(); console.log(array); // prints [0, 1, 2, 2, 29, 3, 3, 34, 7, 7, 782, 8]
Why does that print in lexicographic order? That's how array.sort()
works by default, e.g. if you don't provide a comparator function. Let's fix this.
var array = [3,7,2,8,2,782,7,29,1,3,0,34];
array.sort(function (a, b)
{
return a-b;
});
console.log(array); // prints [0, 1, 2, 2, 3, 3, 7, 7, 8, 29, 34, 782]
Array.sort(function (a, b){return a - b;});
to sort numerically. –
Metacarpal quicksort
is by far the fastest one on Chrome 28, Windows 8... Locally, Array.sort
is not the slowest, but is not really good... –
Adowa quicksort
vs Array.sort
are not comparable, the former is a sorting algorithm, the latter is sort function. You'd need to look at the implementation code of Array.sort
for your specific javascript execution environment to compare. Either way, this answer is incorrect since the question ask specifically for a stable quicksort algorithm. –
Peduncle Quick Sort (ES6)
function quickSort(arr) {
if (arr.length < 2) {
return arr;
}
const pivot = arr[Math.floor(Math.random() * arr.length)];
let left = [];
let right = [];
let equal = [];
for (let val of arr) {
if (val < pivot) {
left.push(val);
} else if (val > pivot) {
right.push(val);
} else {
equal.push(val);
}
}
return [
...quickSort(left),
...equal,
...quickSort(right)
];
}
// Unsorted Array
const arr = [6,9,2,5,0,7,3,1,8,4];
console.log(quickSort(arr)); // [0,1,2,3,4,5,6,7,8,9]
Few Notes
• A random pivot keeps the algorithm efficient even when the data is sorted.
• As much as it is nice to use Array.filter
instead of using for of
loop, like some of the answers in this thread, it will increase time complexity (Array.reduce
can be used instead, though).
A Functional equivalent
In celebration of Functional Javascript, which appears to be the in thing
at the moment, especially given ES6+ wonderful syntactic sugar additions. Arrow functions and destructuring I propose a very clean, short functional equivalent of the quicksort function. I have not tested it for performance or compared it to the built-in quicksort function but it might help those who are struggling to understand the practical use of a quicksort. Given its declarative nature it is very easy to see what is happening as oppose to how it works.
Here is a JSBin version without comments https://jsbin.com/zenajud/edit?js,console
function quickSortF(arr) {
// Base case
if (!arr.length) return []
// This is a ES6 addition, it uses destructuring to pull out the
// first value and the rest, similar to how other functional languages
// such as Haskell, Scala do it. You can then use the variables as
// normal below
const [head, ...tail] = arr,
// here we are using the arrow functions, and taking full
// advantage of the concise syntax, the verbose version of
// function(e) => { return e < head } is the same thing
// so we end up with the partition part, two arrays,
// one smaller than the pivot and one bigger than the
// pivot, in this case is the head variable
left = tail.filter( e => e < head),
right = tail.filter( e => e >= head)
// this is the conquer bit of divide-and-conquer
// recursively run through each left and right array
// until we hit the if condition which returns an empty
// array. These results are all connected using concat,
// and we get our sorted array.
return quickSortF(left).concat(head, quickSortF(right))
}
const q7 = quickSortF([11,8,14,3,6,2,7])
//[2, 3, 6, 7, 8, 11, 14]
const q8 = quickSortF([11,8,14,3,6,2,1, 7])
//[1, 2, 3, 6, 7, 8, 11, 14]
const q9 = quickSortF([16,11,9,7,6,5,3, 2])
//[2, 3, 5, 6, 7, 9, 11, 16]
console.log(q7,q8,q9)
The comments should provide enough if it is already not clear what is happening. The actual code is very short without comments, and you may have noticed I am not a fan of the semicolon. :)
.filter
traverses the whole array) and also does not perform an initial shuffle of the array. –
Embarkation filter
, concat
, []
and the array destructure also allocate memory, so this is mostly an important contribution to illustrate the high-level operation of quicksort and functional style, but it's slow and isn't stable. Using the first element as the pivot is also not optimal (suggested by the commenter above because shuffling effectively gives random pivots). –
Warmonger var array = [8, 2, 5, 7, 4, 3, 12, 6, 19, 11, 10, 13, 9];
quickSort(array, 0, array.length -1);
document.write(array);
function quickSort(arr, left, right)
{
var i = left;
var j = right;
var tmp;
pivotidx = (left + right) / 2;
var pivot = parseInt(arr[pivotidx.toFixed()]);
/* partition */
while (i <= j)
{
while (parseInt(arr[i]) < pivot)
i++;
while (parseInt(arr[j]) > pivot)
j--;
if (i <= j)
{
tmp = arr[i];
arr[i] = arr[j];
arr[j] = tmp;
i++;
j--;
}
}
/* recursion */
if (left < j)
quickSort(arr, left, j);
if (i < right)
quickSort(arr, i, right);
return arr;
}
In this blog http://www.nczonline.net/blog/2012/11/27/computer-science-in-javascript-quicksort/ which has pointed out that Array.sort is implemented in quicksort or merge sort internaly.
Quicksort is generally considered to be efficient and fast and so is used by V8 as the implementation for Array.prototype.sort() on arrays with more than 23 items. For less than 23 items, V8 uses insertion sort[2]. Merge sort is a competitor of quicksort as it is also efficient and fast but has the added benefit of being stable. This is why Mozilla and Safari use it for their implementation of Array.prototype.sort().
and when using Array.sort,you should return -1 0 1 instead of true or false in Chrome.
arr.sort(function(a,b){
return a<b;
});
// maybe--> [21, 0, 3, 11, 4, 5, 6, 7, 8, 9, 10, 1, 2, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22]
arr.sort(function(a,b){
return a > b ? -1 : a < b ? 1 : 0;
});
// --> [22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
Using ES6 rest, spread:
smaller = (a, list) => list.filter(x => x <= a)
larger = (a, list) => list.filter(x => x > a)
qsort = ([x, ...list]) => (!isNaN(x))
? [...qsort(smaller(x, list)), x, ...qsort(larger(x, list))]
: []
This algorithm work almost as fast as the default implementation of Array.prototype.sort in chrome.
function quickSort(t){
_quickSort(t,0,t.length-1,0,t.length-1);
}
function _quickSort(t, s, e, sp, ep){
if( s>=e ) return;
while( sp<ep && t[sp]<t[e] ) sp++;
if( sp==e )
_quickSort(t,s,e-1,s,e-1);
else{
while(t[ep]>=t[e] && sp<ep ) ep--;
if( sp==ep ){
var temp = t[sp];
t[sp] = t[e];
t[e] = temp;
if( s!=sp ){
_quickSort(t,s,sp-1,s,sp-1);
}
_quickSort(t,sp+1,e,sp+1,e);
}else{
var temp = t[sp];
t[sp] = t[ep];
t[ep] = temp;
_quickSort(t,s,e,sp+1,ep);
}
}
}
quickSort time (ms): 738
javaScriptSort time (ms): 603
var m = randTxT(5000,500,-1000,1000);
VS(m);
function VS(M){
var t;
t = Date.now();
for(var i=0;i<M.length;i++){
quickSort(M[i].slice());
}console.log("quickSort time (ms): "+(Date.now()-t));
t = Date.now();
for(var i=0;i<M.length;i++){
M[i].slice().sort(compare);
}console.log("javaScriptSort time (ms): "+(Date.now()-t));
}
function compare(a, b) {
if( a<b )
return -1;
if( a==b )
return 0;
return 1;
}
function randT(n,min,max){
var res = [], i=0;
while( i<n ){
res.push( Math.floor(Math.random()*(max-min+1)+min) );
i++;
}
return res;
}
function randTxT(n,m,min,max){
var res = [], i=0;
while( i<n ){
res.push( randT(m,min,max) );
i++;
}
return res;
}
Yet another quick sort demonstration, which takes middle of the array as pivot for no specific reason.
const QuickSort = function (A, start, end) {
//
if (start >= end) {
return;
}
// return index of the pivot
var pIndex = Partition(A, start, end);
// partition left side
QuickSort(A, start, pIndex - 1);
// partition right side
QuickSort(A, pIndex + 1, end);
}
const Partition = function (A, start, end) {
if (A.length > 1 == false) {
return 0;
}
let pivotIndex = Math.ceil((start + end) / 2);
let pivotValue = A[pivotIndex];
for (var i = 0; i < A.length; i++) {
var leftValue = A[i];
//
if (i < pivotIndex) {
if (leftValue > pivotValue) {
A[pivotIndex] = leftValue;
A[i] = pivotValue;
pivotIndex = i;
}
}
else if (i > pivotIndex) {
if (leftValue < pivotValue) {
A[pivotIndex] = leftValue;
A[i] = pivotValue;
pivotIndex = i;
}
}
}
return pivotIndex;
}
const QuickSortTest = function () {
const arrTest = [3, 5, 6, 22, 7, 1, 8, 9];
QuickSort(arrTest, 0, arrTest.length - 1);
console.log("arrTest", arrTest);
}
//
QuickSortTest();
I found the normal search mode and wrote:
let QuickSort = (arr, low, high) => {
if (low < high) {
p = Partition(arr, low, high);
QuickSort(arr, low, p - 1);
QuickSort(arr, p + 1, high);
}
return arr.A;
}
let Partition = (arr, low, high) => {
let pivot = arr.A[high];
let i = low;
for (let j = low; j <= high; j++) {
if (arr.A[j] < pivot) {
[arr.A[i], arr.A[j]] = [arr.A[j], arr.A[i]];
i++;
}
}
[arr.A[i], arr.A[high]] = [arr.A[high], arr.A[i]];
return i;
}
let arr = { A/* POINTER */: [33, 22, 88, 23, 45, 0, 44, 11] };
let res = QuickSort(arr, 0, arr.A.length - 1);
console.log(res);
Result is [0, 11, 22, 23, 33, 44, 45, 88]
But its not stable; so I checked the other answers and the Idea of @6502 was interesting to me that "two items do not have to be the same" to be distinguishable.
Well, I have a solution in my mind, but it is not optimal. We can keep the indexes of the items in a separate array. Memory consumption will almost double in this idea.
arr.A
=> Array of numbers
arr.I
=> Indexes related to each item of A
influencer
=> This should be a very very small number; I want to use this as a factor to be able to distinguish between similar items.
So we can change the partition like this:
let Partition = (arr, low, high) => {
let pivot = arr.A[high];
let index = arr.I[high];
let i = low;
for (let j = low; j <= high; j++) {
if (arr.A[j] + (arr.I[j] * influencer) < pivot + (index * influencer)) {
[arr.A[i], arr.A[j]] = [arr.A[j], arr.A[i]];
[arr.I[i], arr.I[j]] = [arr.I[j], arr.I[i]];
i++;
}
}
[arr.A[i], arr.A[high]] = [arr.A[high], arr.A[i]];
[arr.I[i], arr.I[high]] = [arr.I[high], arr.I[i]];
return i;
}
let influencer = 0.0000001;
let arr = {
I/* INDEXES */: [10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
A/* POINTER */: [33, 22, 88, 33, 23, 45, 33, 89, 44, 11]
};
let res = QuickSort(arr, 0, arr.A.length - 1);
console.log(res);
Result:
I: [19, 11, 14, 10, 13, 16, 18, 15, 12, 17],
A: [11, 22, 23, 33, 33, 33, 44, 45, 88, 89]
try my solution
const quickSort = (arr) => {
// base case
if(arr.length < 2) return arr;
// recurisve case
// pick a random pivot
let pivotIndex = Math.floor(Math.random() * arr.length);
let pivot = arr[pivotIndex];
let left = [];
let right = [];
// make array of the elements less than pivot and greater than it
for(let i = 0; i < arr.length; i++) {
if(i === pivotIndex) {
continue;
}
if(arr[i] < pivot) {
left.push(arr[i])
} else {
right.push(arr[i])
}
}
// call the recursive case again
return quickSort(left).concat([pivot], quickSort(right));
}
when testing this
quickSort([7, 5, 3, 2, 8, 1, 5]) // returns [[1, 2, 3, 5, 5, 7, 8]]
More compact and easy to understand quicksort implementation
const quicksort = arr =>
arr.length <= 1
? arr
: [
...quicksort(arr.slice(1).filter((el) => el < arr[0])),
arr[0],
...quicksort(arr.slice(1).filter((el) => el >= arr[0])),
];
Quicksort using ES6, filter and spread operation.
We establish a base case that 0 or 1 elements in an array are already sorted. Then we establish an inductive case that if quicksort works for 0 or 1 elements, it can work for an array of size 2. We then divide and conquer until and recursively call our function until we reach our base case in the call stack to get our desired result.
O(n log n)
const quick_sort = array => {
if (array.length < 2) return array; // base case: arrays with 0 or 1 elements are already "sorted"
const pivot = array[0]; // recursive case;
const slicedArr = array.slice(1);
const left = slicedArr.filter(val => val <= pivot); // sub array of all elements less than pivot
const right = slicedArr.filter(val => val > pivot); // sub array of all elements greater than pivot
return [...quick_sort(left), pivot, ...quick_sort(right)];
}
const quicksort = (arr)=>{
const length = Math.ceil(arr.length/2);
const pivot = arr[length];
let newcondition=false;
for(i=0;i<length;i++){
if(arr[i]>arr[i+1]){
[arr[i], arr[i+1]] = [arr[i+1], arr[i]]
newcondition =true
}
}
for(i=arr.length;i>length-1;i--){
if(arr[i]>arr[i+1]){
[arr[i], arr[i+1]] = [arr[i+1], arr[i]]
newcondition =true
}
}
return newcondition? quicksort(arr) :arr
}
const t1 = performance.now()
quicksort([3, 2, 4, 9, 1, 0, 8, 7])
const t2 = performance.now()
console.log(t2-t1)
const quicksort = (arr)=>{
const length = Math.ceil(arr.length/2);
const pivot = arr[length];
let newcondition=false;
for(i=0;i<length;i++){
if(arr[i]>arr[i+1]){
[arr[i], arr[i+1]] = [arr[i+1], arr[i]]
newcondition =true
}
}
for(i=arr.length;i>length-1;i--){
if(arr[i]>arr[i+1]){
[arr[i], arr[i+1]] = [arr[i+1], arr[i]]
newcondition =true
}
}
return newcondition? quicksort(arr) :arr
}
console.log(quicksort([3, 2, 4, 9, 1, 0, 8, 7]))
TypeScript version. O(nlogn)
type NumArr = Array<number>;
function quikSort(arr: NumArr): NumArr {
if (arr.length < 2) {
return arr;
}
const anchorIndex: number = Math.floor((arr.length - 1) / 2);
const anchor: number = arr[anchorIndex];
const greater: NumArr = [];
const lesser: NumArr = [];
anchor
for (let index = 0; index < arr.length; index++) {
const element = arr[index];
if (element !== anchor) {
if (element > anchor) {
greater.push(element);
} else {
lesser.push(element);
}
}
}
return [...quikSort(lesser), anchor, ...quikSort(greater)];
}
const arrNum: NumArr = [2, 8, 1, 0, 25];
const answer: NumArr = quikSort(arrNum);
In anchorIndex
value, you can also use Math.random()
. But i like always take middle as an index.
This is it !!!
function typeCheck(a, b){
if(typeof a === typeof b){
return true;
}else{
return false;
}
}
function qSort(arr){
if(arr.length === 0){
return [];
}
var leftArr = [];
var rightArr = [];
var pivot = arr[0];
for(var i = 1; i < arr.length; i++){
if(typeCheck(arr[i], parseInt(0))){
if(arr[i] < pivot){
leftArr.push(arr[i]);
}else { rightArr.push(arr[i]) }
}else{
throw new Error("All must be integers");
}
}
return qSort(leftArr).concat(pivot, qSort(rightArr));
}
var test = [];
for(var i = 0; i < 10; i++){
test[i] = Math.floor(Math.random() * 100 + 2);
}
console.log(test);
console.log(qSort(test));
Slim version:
function swap(arr,a,b){
let temp = arr[a]
arr[a] = arr[b]
arr[b] = temp
return 1
}
function qS(arr, first, last){
if(first > last) return
let p = first
for(let i = p; i < last; i++)
if(arr[i] < arr[last])
p += swap(arr, i, p)
swap(arr, p, last)
qS(arr, first, p - 1)
qS(arr, p + 1, last)
}
Tested with random values Arrays, and seems to be always faster than Array.sort()
quickSort = (array, left, right) => {
if (left >= right) {
return;
}
const pivot = array[Math.trunc((left + right) / 2)];
const index = partition(array, left, right, pivot);
quickSort(array, left, index - 1);
quickSort(array, index, right);
}
partition = (array, left, right, pivot) => {
while (left <= right) {
while (array[left] < pivot) {
left++;
}
while (array[right] > pivot) {
right--;
}
if (left <= right) {
swap(array, left, right);
left++;
right--;
}
}
return left;
}
swap = (array, left, right) => {
let temp = array[left];
array[left] = array[right];
array[right] = temp;
}
let array = [1, 5, 2, 3, 5, 766, 64, 7678, 21, 567];
quickSort(array, 0, array.length - 1);
console.log('final Array: ', array);
const quickSort = array =>
(function qsort(arr, start, end) {
if (start >= end) return arr;
let swapPos = start;
for (let i = start; i <= end; i++) {
if (arr[i] <= arr[end]) {
[arr[swapPos], arr[i]] = [arr[i], arr[swapPos]];
swapPos++;
}
}
qsort(arr, start, --swapPos - 1);
qsort(arr, swapPos + 1, end);
return arr;
})(Array.from(array), 0, array.length - 1);
const quicksort = (arr)=>{
const length = Math.ceil(arr.length/2);
const pivot = arr[length];
let newcondition=false;
for(i=0;i<length;i++){
if(arr[i]>arr[i+1]){
[arr[i], arr[i+1]] = [arr[i+1], arr[i]]
newcondition =true
}
}
for(i=arr.length;i>length-1;i--){
if(arr[i]>arr[i+1]){
[arr[i], arr[i+1]] = [arr[i+1], arr[i]]
newcondition =true
}
}
return newcondition? quicksort(arr) :arr
}
const t1 = performance.now();
const t2 = performance.now();
console.log(t2-t1);
console.log(quicksort([3, 2, 4, 9, 1, 0, 8, 7]));
const quicksort = (arr)=>{
if (arr.length < 2) return arr;
const pivot = arr[0];
const left = [];
const right = [];
arr.shift();
arr.forEach(number => {
(number<pivot) ? left.push(number) : right.push(number);
});
return ([...quicksort(left), pivot, ...quicksort(right)]);
}
console.log(quicksort([6, 23, 29, 4, 12, 3, 0, 97]));
How about this non-mutating functional QuickSort:
const quicksort = (arr, comp, iArr = arr) => {
if (arr.length < 2) {
return arr;
}
const isInitial = arr.length === iArr.length;
const arrIndexes = isInitial ? Object.keys(arr) : arr;
const compF = typeof comp === 'function'
? comp : (left, right) => left < right ? -1 : right < left ? 1 : 0;
const [pivotIndex, ...indexesSansPivot] = arrIndexes;
const indexSortReducer = isLeftOfPivot => [
(acc, index) => isLeftOfPivot === (compF(iArr[index], iArr[pivotIndex]) === -1)
? acc.concat(index) : acc,
[]
];
const ret = quicksort(indexesSansPivot.reduce(...indexSortReducer(true)), compF, iArr)
.concat(pivotIndex)
.concat(quicksort(indexesSansPivot.reduce(...indexSortReducer(false)), compF, iArr));
return isInitial ? ret.reduce((acc, index) => acc.concat([arr[index]]), []) : ret;
};
As a bonus, it supports optional comparing function which enables sorting of array of objects per property/properties, and doesn't get slower if dealing with larger values/objects.
First quick sorts original array keys, then returns sorted copy of original array.
© 2022 - 2024 — McMap. All rights reserved.